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1 Introduction 

   The relation between risk and return has been a central field in finance since the 

seminal paper by Sharpe (1964). Traditional asset pricing theory postulates a positive 

relation between return and volatility; namely, high risks lead to high returns. For 

instance, Merton (1980) argues that an asset’s conditional expected (excess) return is 

positively related to its conditional variance.  

 

   However, the empirical results of the risk-return relation vary heavily. Several 

studies support a positive relationship between excess returns and conditional 

variance (French et al. (1987), Campbell and Hentschel (1992), Ghysels et al. (2005), 

Guo and Whitelaw (2006), Bali and Peng (2006), Ludvigson and Ng (2007), Jiang 

and Lee (2014), etc.). Another group of papers finds a negative relation between the 

two (Nelson (1991), Glosten et al. (1993), Jensen and Lunde (2001), etc.). Campbell 

(1987), Chan et al. (1992), Whitelaw (2000), Müller et al. (2011) and Kinnunen (2014) 

fail to find any significant relation.  

 

   The literature typically focuses on mature markets, such as those in the US or 

Europe. Harvey (2001) argues that emerging markets typically exhibit high expected 

returns and high volatility. Thus, risk-return relations in such markets may display 

different patterns from those in mature markets. Theodossiou and Lee (1995) and 

Santis and ïmrohoroglu (1997) find no relation between conditional volatility and 

expected returns in some Asian countries. Jiranyakul (2011) and Li et al. (2013) find a 

positive risk-return relationship. Darrat et al. (2011) highlights the sensitivity of the 

risk-return relations to different model specifications and possible breaks through 

financial crisis.  

 

   In the Chinese stock market, the results are also inconclusive. Chen et al. (2003) 

and Chen (2013) support that higher volatility results in higher returns. Zhang et al. 

(2000) and Wang (2011) confirm a negative relationship. Several papers such as Liu 

and Chang (2002) and Wang and Zhuo (2009) find no significant relationship between 

the two. This inconclusiveness is also reflected in 1) different sample periods with 

different results (e.g., Chen and Huang (2002) report that the Shenzhen composite 

index revealed a positive risk-return relationship from 1997 to 2000 while a larger 

sample from 1993 to 2001 failed to detect significant results); 2) different models that 

deliver different results (e.g., Wang (2011) find that the significant results depend on 

whether the stochastic volatility model is used); 3) different volatility measures that 

yield different results (e.g., Zuo and Liu (2011) show that continuous volatility 

components have a positive relation with returns while jump components have a 

negative relation); and 4) different markets with different results (e.g., Chen (2015) 

finds that the risk-return relationship is generally positive for the Shenzhen stock 

market and negative for the Shanghai stock market).  
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   One explanation for these mixed results is the volatility feedback hypothesis 

introduced by French et al. (1987) and Campbell and Hentschel (1992), in which a 

higher volatility in the current period induces a higher volatility expectation in the 

future, a higher expected return and a higher discount rate. The higher expected return 

is an implication of the traditional equity risk premium. However, a higher discount 

rate means a lower present value of future cash flow and, as a result, a downside 

movement in the current stock price. Unlike the equity risk premium, volatility 

feedback affects the current rather than the next period’s expected stock prices. Figure 

1 illustrates the mechanism of the two effects. At the end of day 𝑡 − 1 , a 

representative investor expects the level of volatility of day 𝑡 based on his current 

market information set. Then, he requires some compensation for risk based on the 

expected volatility (expected risk) of day 𝑡. Thus, higher volatility corresponds to 

lower current price and higher expected returns. This is the risk premium part. During 

the opening hours on day 𝑡. various news and noises arrive at the market and cause 

the price to fluctuate. If the actual volatility during the opening hours is unexpectedly 

higher than the investor’s expected volatility, he requires a higher expected return in 

the future, which then causes the contemporary stock price to fall accordingly. This is 

known as the volatility feedback effect.  

[Insert Figure 1 here] 

 

   The inconclusive empirical results might be caused by the fact that most of them 

ignore volatility feedback and regard the overall effect of return over conditional 

volatility as the sole effect of the equity risk premium. Campbell and Hentschel 

(1992), Guo and Whitelaw (2006) and Yang (2011) all emphasize the importance of 

the volatility feedback effect in testing the risk-return relation.  

 

   From a technical perspective, the traditional GARCH model does not provide a 

good platform for volatility modeling. The volatility information is included in the 

model through the squared return (or absolute return), which is noisy and inefficient 

(see Andersen and Bollerslev (1998), etc.). The estimated parameters tend to put 

extreme weight on the past conditional volatility, with little weight on the new shock. 

It is hard for a GARCH model to track fast-changing volatility dynamics (see Hansen 

et al. (2012), etc.). Andersen et al. (2003) and other recent literature suggests that 

realized measures constructed from high frequency data out-preform GARCH models 

in most aspects of volatility modeling. Bali and Peng (2006) highlight the valuable 

information of high-frequency data in finding consistent results for the risk-return 

relation. Thus, it is important to test the risk-return relation using information from 

realized measures.  

 

   Based on the two points mentioned above, this paper models the volatility 

feedback effect with information from realized measures to better investigate the 

risk-return relation. The volatility feedback effect is modeled through the framework 

proposed by Wang and Yang (2013), with a volatility shock added to the traditional 

GARCH-in-mean model. The conditional volatility in the next period can then be 
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calculated using current information, and then related to the equity risk premium. The 

newly added unexpected volatility shock shifts the current stock return and helps to 

identify the volatility feedback effect. Moreover, we also consider the well-known 

leverage effect (e.g., Nelson (1991), etc.) because it also states the negative 

relationship between return and volatility. Given that the feedback effect is modeled 

under a GARCH framework, we seek a GARCH-type model with realized measures 

and leverage effect as a platform for this paper. We use the Realized GARCH model 

(Hansen et al. (2012) and Hansen and Huang (2015)) to model the volatility dynamics 

because it is a simple but complete model for returns and realized measures. 

Following Wang and Yang (2013), a volatility shock is also added to the current 

model and the leverage effect is modeled through a Gaussian Copula function for 

greater flexibility. Given that the aggregate of returns follows a normal log-normal 

(NLN) distribution, we call this new model the Realized GARCH-NLN.  

 

   With the help of this new model, an empirical investigation of the risk-return 

relation is performed on three major Chinese stock indices: the HuShen 300 Index, the 

Shanghai Composite Price Index and the Shenzhen Component Price Index. There are 

several notable findings about these indices. First, all of them have significant positive 

risk premiums and negative volatility feedback effects. The magnitude of the latter is 

generally small and leads to a significant positive overall risk-return relation. Second, 

the risk premium required in the Shenzhen stock market is generally larger than that 

for the Shanghai stock market. This may be explained by the fact that companies 

listed in the former tend to have lower market capitalization on average. Third, after 

the subprime crisis, both markets require higher risk premiums and lower volatility 

feedbacks than before. The difference is more profound in the Shenzhen stock market. 

Finally, the Realized GARCH-NLN model provides better consistency in the 

significance of related effects than the traditional GARCH/EGARCH model with no 

volatility feedback structures. This highlights the efficiency gain provided by the 

realized measures in the context of risk-return relation assessment.  

 

   The remainder of this paper is organized as follows. Section 2 introduces the 

Realized GARCH-NLN model and its estimation method. Section 3 provides the 

empirical results and Section 4 concludes the paper.  

 

2 Econometric Methodology 

2.1 Model Specification 

   The GARCH-in-mean (GARCH-M) model proposed by Engle et al. (1987) has 

been widely used to study the relation between return and conditional variance. In this 

paper, we investigate the risk-return relation at the daily level based on a Realized 

GARCH model. Hansen et al. (2012) propose using realized volatility to measure the 
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conditional variance, which is similar to the GARCH-X model. Their model can be 

written as  

1 1

2

~ (0,1)

ln ln ln

ln ln ~ (0, )

t t t t

t t t

t t t t u

r h z z N

h b h a x

x h u u N



  

 



  

  

 

where 𝑟𝑡  is the return of an asset at the end of date 𝑡 and 𝑥𝑡  is the realized 

measures of volatility. The novel specification of their model is the measurement 

equation, which links the conditional variance to the realized volatility.  

 

   To model the risk-return relation, we first consider the mean equation of the 

Realized GARCH model. The stock price change can be decomposed into two 

components: the expected price change (risk premium) that investors require based on 

the prior information and the unexpected price change due to unexpected news and 

noise trading.  

 

   Let t  be the information set generated by {𝑟𝑡, 𝑥𝑡, 𝑟𝑡−1, 𝑥𝑡−1, … }. At the end of 

date 𝑡 − 1, investors have an expectation of volatility for date 𝑡 based on the prior 

information. Thus, they require a risk premium to compensate their risk.  

   For a given 1t , the expected risk premium required by investors at day 𝑡 can 

be specified as  

0 1t tm m h                (1) 

where 𝑚1 is the parameter that measures the magnitude of the risk premium. ℎ𝑡 is 

the conditional variance of date 𝑡, which measures the expected volatility of the 

representative investor. We assume a set of newly arrived information at date 𝑡. The 

price of an asset changes according to the unexpected news. Let 𝑠𝑡 denote the 

volatility shock, which is independent with 1t . Wang and Yang (2013) specify the 

contemporaneous volatility as  

2 2 2

1var( | , )t t t t t tr s h s         (2) 

where the positive constant θ depends on the mean and variance of 2

ts . For a given

1t , a large volatility shock ts  leads to a large contemporaneous volatility 2

t . Then, 

they specify the return shock as the standardized score  

t t
t

t t

r

h s







            (3) 

where 𝜀𝑡  implies the direction of the unexpected price change. To capture the 

possible correlation between 𝜀𝑡 and 𝑠𝑡, the return shock is decomposed as 
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, ~ (0,1)t t t ts iid N           (4) 

where 𝜉𝑡 is independent of 𝑠𝑡. 𝛽 is the parameter dictating the correlation between 

return shock 𝜀𝑡 and volatility shock 𝑠𝑡. Through some mathematical derivation, the 

return can be expressed as  

0 1( )

t t t t t

t t t

r h h

m m h h

  

 

  

   
     (5) 

where 2

t t t ts s        . 𝜈𝑡  follows a normal variance mean mixture 

distribution. Wang and Yang (2013) argue that 𝑚1 represents the risk premium and 

𝛽𝜂 denotes the volatility feedback effect.  

 

   In this paper, we specify that ln(𝑠𝑡
2)~𝑁(0, 𝛾). Hence, the overall shock 𝜈𝑡 

follows a normal log-normal mixture distribution NLN(𝛾, 𝛽, −𝛽𝜂, 𝜃) , which is 

defined by  

2 2 2 2 2 2 2 2| ~ ( , ), ln( ) ~ (ln( ), )t t t t ts iid N s s s iid N              (6) 

where 2 /21/ ( 1)e e e      , 
/2e  . 

 

   To complete the model, we must model the conditional variance. The advantage of 

Realized GARCH is that it can model conditional variance more accurately and 

dynamically via the incorporation of realized measures of volatility. However, it is not 

straightforward to link realized volatility and the conditional variance, as they are 

generated from different information sets. In the Realized GARCH model, 𝑢𝑡 

contains both the volatility shock at date 𝑡 and the sampling error of the realized 

measure of volatility. To separate the volatility shocks from the sampling error, we 

specify the measurement equation as  

2ln lnt t tx             (7) 

where 𝜎𝑡
2 is the contemporaneous volatility at date 𝑡 and 𝜂𝑡 denotes the sampling 

error of realized volatility. Substituting equation 7 with Equation 2, we get 

2 2

1ln ( ln ) ln ( ln )

ln

t t t t

t t

x h s

h u

     

 

    

  
      (8) 

 

Finally, we can write our model as  

0 1

1 1

( )

ln ln ln

ln ln

t t t t

t t t

t t t

r m m h h

h b h a x

x h u
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

 

 

   

  

  
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2.2 Estimation 

   In this section we present the estimation strategy for our model. Although the 

original Realized GARCH model uses an explicit quadratic function to model 

leverage effect, it is not directly applicable to our case because we have three random 

shocks. A much simpler way is to model the distribution for observable shocks 

(𝜈𝑡 , 𝑢𝑡). Given that the marginal distribution of 𝜈𝑡 is not Gaussian, it is unlikely that 

we can model the joint distribution as a bivariate normal distribution. When direct 

modeling is not applicable, the copula technique is often used to provide joint 

distribution through marginal distributions. Here, we use the Gaussian copula to link 

the marginal distributions of 𝜈𝑡  (Normal log-normal) and 𝑢𝑡  (Normal). The 

parameter for this copula function measures the “correlation”1 of 𝜈𝑡  and 𝑢𝑡 . A 

negative parameter represents the typical leverage effects between return and 

volatility. Together, the parameters for maximum likelihood estimation are 

(𝑚0, 𝑚1, 𝜔, 𝑎, 𝑏, 𝛽, 𝛾, 𝜆, 𝜑, 𝜎𝑢 , 𝜌) . For our model, the parameters can be easily 

estimated using the method of maximum likelihood. We use a two-stage estimation 

method to estimate our model for its ease of computation. Given the information set 

1t = {𝑟𝑡, 𝑥𝑡, 𝑟𝑡−1, 𝑥𝑡−1, … }, the joint log-likelihood function can be expressed as  

1 1

1

1 1

1 1

log ({ , } ; ) log ( , | )

log ( | ) log ( | , )

n
n

t t t t

t

n n

t t t t t

t t

L r x f r x

f r f x r

 



 

 



 



 
 

where 𝑛 is the number of observations.  

 

   The first-stage estimator of parameters (𝑚0, 𝑚1, 𝜔, 𝑎, 𝑏, 𝛽, 𝛾, 𝜆, 𝜑, 𝜎𝑢)  can be 

obtained by maximizing the likelihood above. The two-stage estimator of the 

Gaussian copula parameter 𝜌 can then be computed as  

1 1 2 1

1

ˆ arg min log ( ( | ), ( | , ); )
n

t t t t t t t

t

c F r F x r


  



   

𝐹1𝑡  and 𝐹2𝑡  are the cumulative density functions of the conditional marginal 

distributions.  

 

   From Equation 6, the distribution of returns is 

2 2 2 2 2 2 2 2

2 0 1 2 2 2 2| ~ ( ( ) , ), ln( ) ~ (ln( ), )t t t t t t tr c s iid N m m c s h h c s c s iid N c     

    

   Hence, 𝑟𝑡 follows a normal distribution conditional on 𝑐2
2𝑠𝑡

2, which follows a 

                                            
1 It is actually the correlation of the probability inverse transformation of 𝜈𝑡 and 𝑢𝑡.  
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log-normal distribution. The probability density function can then be evaluated by 

numerical integration; namely, the Gaussian-Kron method.  

 

   The log likelihood function of 𝑥𝑡 can be given by 

2 2 2

1

1 1

1
log ( | , ) [log(2 ) log( ) / ]

2

n n

t t t u t u

t t

f x r u  

 

     

 

   The log likelihood function of the Gaussian copula can be expressed as  

1 2 1 2 1 1

1 1 2 1 1 2 1 2

1 1

1 1 1
log ( ( | ), ( | , ); ) [ log (( ) ( ) 2 )]

2 2 2

n n

t t t t t t t t t t t

t t

c F r F x r F F F F     

 

 

     

 

where 𝐹1𝑡
−1 and 𝐹2𝑡

−1  are the inverse cumulative density functions of 𝑟𝑡 and 𝑥𝑡 , 

respectively.  

 

3 Data and Empirical Results 

3.1 Data 

   Our empirical results are based on the daily logarithmic returns for three major 

stock indices: the HS300 Index (HS300), the Shanghai Composite Price Index (SHCI) 

and the Shenzhen Component Price Index (SZCI). Given that the average market 

capitalization of the companies listed in the Shanghai stock exchange is larger than 

those listed in the Shenzhen stock exchange, the SHCI can be viewed as representing 

large stocks while the SZCI represents relatively small stocks. We use the realized 

kernel (RK) proposed by Barndorff-Nielsen et al. (2008) as the realized measure 

because it is robust to market microstructure noise. The stock index data are available 

from January 5, 2006 to December 31, 2013, delivering 1931 distinct trading days. 

The data are obtained from the Resset data library.  

       [Insert Table 1 here]  

 

   Table 1 summarizes the basic descriptive statistics for the daily return, RKs and 

logarithms of daily RKs. Both the returns and the RKs reveal non-zero skewness and 

excess kurtosis. The average returns and RKs over the sample period for the SZCI are 

higher than those for the SHCI, which indicates that small stocks have higher returns 

and volatility on average. The HS300, as an inter-market index, has a modest average 

return and volatility level.  

 

3.2 Full-sample Results 
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   Table 2 presents the estimation results in the full sample period, where the 

sandwich formula is used to calculate standard errors.  

[Insert Table 2 here]  

 

   In accordance with Hansen et al. (2012), we have a much larger coefficient of RK 

than the coefficient of squared return in the traditional GARCH model. This shows 

that the RK has more accurate information in updating future volatility. Parameter 𝜙 

is around 1, which reinforces the idea that the last equation in Realized GARCH-type 

models is the measurement equation. 𝑚1  measures the magnitude of the risk 

premium, and it is significantly positive for all three indices. This indicates a positive 

compensation for risk bearing. In contrast, 𝛽𝜂, which denotes the volatility feedback 

effect, is significantly negative for all three indices. The magnitude of the volatility 

feedback effect is much smaller than the risk premium. As a result, the overall 

risk-return relation 𝑚1 + 𝛽𝜂, defined as the joint relation of the risk premium and the 

volatility feedback effect, is significantly positive for all three indices. Hence, there is 

a significantly positive relation between risk and return from 2006 to 2013 for both 

the Shanghai and the Shenzhen stock markets. Investors generally get high returns 

when bearing high systematic risk. The correlation parameter for the Gaussian copula 

is negative and highly significant, revealing a strong leverage effect.  

 

   Compared with the SHCI, the SZCI reveals a higher risk premium and a lower 

volatility feedback effect. The overall positive relation is stronger for the Shenzhen 

stock market, suggesting that small stocks usually need a higher risk compensation. A 

notable difference between the SZCI and the SHCI lies in the variance of the 

log-square volatility shock ln(𝑠𝑡
2). Due to the zero mean of ln(𝑠𝑡

2), the significantly 

lower for the SZCI indicates that the volatility shock is relatively lower for small 

stocks. It might be counter-intuitive at first glance, but it is consistent with the data 

shown in Table 1. logRK for the SZCI has a higher mean and lower standard 

deviation. Moreover, small stocks usually have lower (if not zero) dividend yields. A 

rise in the discount rate has less effect on their prices.  

 

3.3 Mean Equation Specification 

   For the mean equation, traditional risk-return relation studies use three types of 

specifications: 1) the square-root of conditional volatility, 2) the conditional volatility 

itself and 3) the logarithm of conditional volatility. As a robustness check, we 

examine whether the two remaining specifications alter the results reported in Table 2.  

   The variance specification is given by  

0 1( )t t t tr m m h h      

   The log variance specification can be expressed as  

0 1( ) log( )t t t tr m m h h      
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   Table 3 reports the related results. Given that the specification of variance differs 

from model to model, the magnitude of parameters cannot be directly compared 

across different models. However, the relative magnitude of the risk premium and the 

volatility feedback within each specification is in line with Table 2.  

 

3.4 Results for Sub-samples 

   Studies indicate that the mixed empirical evidence is partially a result of the time 

varying facts of the risk-return relation.2 To investigate the possible change in the 

risk-return relation after the subprime crisis, we divide our data into two sub-sample 

periods: January 5, 2006 to December 31, 2009 (covering the subprime crisis) and 

January 4, 2010 to December 31, 2013. The results are presented in Table 1. The 

significant difference between the two sub-samples indicates a profound structural 

change after the subprime crisis.  

 

   During the first sub-sample, the risk premium parameter 𝑚1 is neither small nor 

statistically significant. Thus, there is no significant risk premium. It might be a sign 

of irrationality, as the first sub-sample contains a strong bull and bear market. During 

the bull market, when all of the stocks move upward, a simple buy and hold strategy 

can provide enough returns. Thus, investors generally do not care much about the risk 

premium. During the bear market, when all of the stocks move downward, most 

investors are inactive (either leaving the market or becoming trapped within it). The 

market is full of risk with little premium. During the second sub-sample, the risk 

premium parameter grows significantly larger, indicating significant risk premium 

requirements, which is a sign of rationality. The volatility feedback effect 𝛽𝜂 is 

significantly negative in both sub-samples. However, the magnitude is much smaller 

after the crisis. The overall risk-return relation parameters for all three indices are 

close to 0 in the first period. Then 𝑚1 + 𝛽𝜂 increases to about 1.0 and is statistically 

significant after the crisis. Economically, the results suggest that a 

one-standard-deviation increase in volatility is associated with roughly 1% increase in 

the expected return. The risk premium of the SZCI is consistently larger than that of 

the SHCI in both periods, and the gap widens after the crisis. The overall risk-return 

relation, 𝑚1 + 𝛽𝜂, is negative for the SZCI and positive for the SHCI in the first 

period. After the crisis, 𝑚1 + 𝛽𝜂 for the SZCI changes to positive and surpasses the 

SHCI.  

 

   In short, we find that the overall effect can change its sign in different sub-samples. 

However, the decomposed risk premium and volatility feedback effect are 

consistently significant and keep their signs in both sub-samples. This provides 

additional support for the importance of the volatility feedback effect in 

                                            
2
 Rossi and Timmermann (2010), Engle et al. (1987) and Yu and Yuan (2011), among others.  
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understanding the risk-return relation.  

 

3.5 Comparison with (E)GARCH-M Models 

   We also estimate the risk-return relation parameter using the classical 

(E)GARCH-M models, which are widely used in related studies. Given that the 

(E)GARCH-M model cannot take the volatility feedback effect into account, it can 

only report the overall risk-return relation. A quick review of these two models is as 

follows: The GARCH-M model is given by  

0 1t t t tr m m h h z    

2

1 1 1t t t th h z h        

 

   The EGARCH-M model is given by  

0 1

1 1 1

2
log( ) ( ) log( )

t t t t

t t t t

r m m h h z

h z z h   


  

  

    
 

 

   The estimation results of the GARCH-M (EGARCH-M) models are presented in 

the top (bottom) panel of Table 5. It is clear that the overall risk-return relation 

parameter 𝑚1 is much smaller than 𝑚1 + 𝛽𝜂 of the Realized GARCH-NLN model 

for all three indices. The results for the Shenzhen stock market are even statistically 

insignificant. To some extent, this contrast explains the confusion in previous studies 

using GARCH family models: 1) the model cannot distinguish between the two 

contradicting effects, leading to inconclusive empirical results, and 2) the GARCH 

model delivers a relatively poor volatility estimation that leads to inaccurate estimates 

of 𝑚1. Because the measurement error generally leads to a bias toward zero.  

 

4 Conclusions 

   In this paper, we propose a new model to revisit risk-return relation of stock 

markets based on Wang and Yang (2013) and Hansen et al. (2012). The model has two 

important characters: 1) it can distinguish the risk premium and volatility feedback 

effect, 2) it includes information from high-frequency data with the help of a Realized 

GARCH structure.  

 

   Based on this new model, empirical results support a significant positive risk 

premium as well as a significant negative volatility feedback effect over the 

full-sample period. Although the sign of risk premium is positive over sub-samples, it 
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is not significant in the first sub-sample covering the sub-prime crisis. On the contrary, 

the volatility feedback effect is not significant in post-crisis sub-sample. As a result, 

the overall risk-return relation is positive and significant over the full-sample period. 

During the crisis period, the relation is either weak or inverted. Inter-market 

comparison shows a higher risk premium and lower volatility feedback effect for 

small stocks.  

 

   Besides the time-varying and inter-market investigation of risk-return relation, 

several interesting questions are still need further research. First, Baker and Wurgler 

(2006), Yu and Yuan (2011) documented that market return is positively related to the 

market’s conditional variance in low-sentiment periods but unrelated to variance in 

high- sentiment periods. Second, Rossi and Timmermann (2010) argued that there is a 

positive risk-return relation at low and medium levels of volatility, but this relation is 

inverted at high levels of volatility. An appealing extension of this paper is to check 

whether our results hold in different period of investor sentiment and volatility levels.  
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Table 1: Summary Statistics of Market Return and Realized Kernel. 

(a) HS300 

Series Mean Median Min Max St.Dev Skewness Kurtosis Obs 

returns 0.0469 0.1252 -9.6949 8.9310 1.9227 -0.3947 5.5680 1931 

RK 2.3976 1.2954 0.1289 32.5390 3.0751 3.5475 21.8056 1931 

LogRK 0.3559 0.2588 -2.0489 3.4824 0.9854 0.3418 2.6515 1931 

(b) SHCI 

Series Mean Median Min Max St.Dev Skewness Kurtosis Obs 

returns 0.0302 0.1039 -9.2561 9.0345 1.7758 -0.3733 6.2242 1931 

RK 2.0233 0.9872 0.1031 32.7373 2.7834 3.9529 27.6489 1931 

LogRK 0.1364 -0.0129 -2.2718 3.4885 1.0192 0.4612 2.5396 1931 

(c) SZCI 

Series Mean Median Min Max St.Dev Skewness Kurtosis Obs 

returns 0.0524 0.0921 -9.7501 9.1615 2.0038 -0.3579 5.2164 1932 

RK 2.9661 1.7248 0.2071 56.9748 3.6236 4.4265 40.5221 1932 

LogRK 0.6468 0.5451 -1.5748 4.0426 0.8947 0.4404 2.7402 1932 

Note: Returns are reported as percentage changes and RK is reported in the 

corresponding scale. Obs is the effective sample size. Kurtosis is the original one: it 

reports 3 for standard normal distribution. 
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Table 2: Estimation Results for Realized GARCH-NLN model 

 
HS300 SHCI SZCI 

 
Coef Std.Err Coef Std.Err Coef Std.Err 

1m  0.3648 0.1476 0.4643 0.1431 0.5000 0.1626 

  -0.0639 0.0195 -0.0687 0.0186 -0.0535 0.0227 

1m   0.3009 0.1431 0.3956 0.1398 0.4465 0.1598 

  -0.1953 0.0303 -0.2128 0.0317 -0.2222 0.0338 

a  0.3338 0.0333 0.3298 0.0349 0.3403 0.0357 

b  0.5794 0.0371 0.5972 0.0395 0.5713 0.0404 

  -0.0528 0.0164 -0.0562 0.0155 -0.0451 0.0194 

  0.7720 0.0605 0.8121 0.0599 0.6854 0.0554 

  0.5634 0.0663 0.6063 0.0704 0.6496 0.0592 

  1.1561 0.0734 1.1358 0.0680 1.1458 0.0726 

2

u  0.2992 0.0132 0.2881 0.0136 0.2626 0.0108 

0m  -0.1266 0.1175 -0.1819 0.098 -0.3224 0.1449 

  -0.1449 0.0143 -0.1346 0.0097 -0.1421 0.0258 

Robust standard errors are reported, the delta method is applied to the robust standard 

errors of   and 1m  . 
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Table 3: Estimation Results for Different Mean Equation Specifications 

 
Variance Specification 

 
Log Variance Specification 

 
HS300 SHCI SZCI 

 
HS300 SHCI SZCI 

 
Coef Std.Err Coef Std.Err Coef Std.Err 

 
Coef Std.Err Coef Std.Err Coef Std.Err 

1m  0.2129 0.0515 0.2386 0.0532 0.2974 0.0833 
 

0.1863 0.0670 0.2509 0.0565 0.3273 0.0821 

  -0.0650 0.0184 -0.0689 0.0182 -0.0604 0.0229 
 

-0.0631 0.0191 -0.0677 0.0183 -0.0572 0.0214 

1m   0.1479 0.0462 0.1697 0.0466 0.2369 0.0774 
 

0.1232 0.0649 0.1832 0.0518 0.2702 0.0797 

  -0.1952 0.0299 -0.2092 0.0310 -0.2190 0.0331 
 

-0.1941 0.0301 -0.2158 0.0324 -0.2230 0.0339 

a  0.3323 0.0329 0.3260 0.0343 0.3332 0.0351 
 

0.3336 0.0333 0.3334 0.0353 0.3393 0.0360 

b  0.5798 0.0366 0.5990 0.0393 0.5707 0.0404 
 

0.5789 0.0373 0.5952 0.0398 0.5680 0.0407 

  -0.0537 0.0155 -0.0565 0.0153 -0.0510 0.0196 
 

-0.0522 0.0161 -0.0554 0.0153 -0.0482 0.0183 

  0.7742 0.0598 0.8055 0.0588 0.6878 0.0547 
 

0.7672 0.0604 0.8157 0.0607 0.6871 0.0552 

  0.5653 0.0657 0.6030 0.0701 0.6535 0.0604 
 

0.5603 0.0662 0.6079 0.0703 0.6536 0.0598 

  1.1600 0.0724 1.1442 0.0676 1.1711 0.0775 
 

1.1579 0.0737 1.1288 0.0667 1.1571 0.0758 
2

u  0.2992 0.0132 0.2882 0.0136 0.2628 0.0108 
 

0.2992 0.0132 0.2881 0.0136 0.2627 0.0108 

0m  0.0093 0.0232 -0.0008 0.0002 -0.1254 0.0740 
 

0.1793 0.0486 0.2458 0.0537 0.1593 0.0459 

  -0.1444 0.0302 -0.1339 0.0098 -0.1417 0.0733 
 

-0.1369 0.0144 -0.1155 0.0096 -0.1261 0.0143 

Robust standard errors are reported, the delta method is applied to the robust standard errors of   and 1m  . 
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Table 4: Estimation Results for Realized GARCH-NLN model with two sub-samples 

 
HS300 SHCI SZCI 

 
2006-2009 2010-2013 2006-2009 2010-2013 2006-2009 2010-2013 

 
Coef Std.Err Coef Std.Err Coef Std.Err Coef Std.Err Coef Std.Err Coef Std.Err 

1m  0.1676  0.1497  1.0411  0.4263  0.1305  0.1599  0.8632  0.4179  0.1411  0.1885  1.2114  0.4034  

  -0.1417  0.0345  -0.0124  0.0222  -0.1184  0.0307  -0.0336  0.0250  -0.1562  0.0384  -0.0122  0.0319  

1m   0.0260  0.1430  1.0287  0.4240  0.0122  0.1544  0.8296  0.4159  -0.0151  0.1856  1.1992  0.4047  

  -0.2001  0.0532  -0.2368  0.0515  -0.2379  0.0546  -0.2416  0.0518  -0.2175  0.0545  -0.2629  0.0528  

a  0.4356  0.0527  0.2166  0.0398  0.4379  0.0597  0.2018  0.0368  0.4199  0.0552  0.2713  0.0479  

b  0.4769  0.0549  0.6392  0.0580  0.4854  0.0619  0.6661  0.0523  0.4781  0.0616  0.5971  0.0598  

  -0.1204  0.0312  -0.0100  0.0179  -0.0992  0.0268  -0.0272  0.0203  -0.1364  0.0349  -0.0100  0.0261  
  0.6917  0.0825  0.8628  0.0852  0.7377  0.0788  0.8495  0.0862  0.5821  0.0662  0.8048  0.0867  

  0.4830  0.0876  0.8755  0.1818  0.5513  0.0809  0.9316  0.2213  0.5746  0.0811  0.8189  0.1231  
  1.0878  0.0837  1.3565  0.2137  1.0570  0.0853  1.3855  0.2062  1.1014  0.0899  1.1884  0.1762  

2

u  0.3455  0.0222  0.2498  0.0155  0.3329  0.0221  0.2392  0.0170  0.3096  0.0186  0.2140  0.0117  

0m  0.3652  0.1308  -0.7716  0.2980  0.3204  0.1322  -0.5228  0.2540  0.4088  0.2080  -1.0000  0.3123  
  -0.2054  0.0099  -0.0764  0.0146  -0.1701  0.0163  -0.0999  0.0315  -0.1864  0.0202  -0.0874  0.0088  

Robust standard errors are reported, the delta method is applied to the robust standard errors of   and 1m  . 
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Table 5: Estimation results for GARCH/EGARCH in mean models 

 

(a) GARCH model 

Robust standard errors are in parenthesis. 

 

(b) EGARCH model 

EGARCH 1m  
0h  

0m          

HS300 0.0948 1.0819 -0.1167 0.0183 0.1140 -0.0064 0.9892 

 
(0.0235) (0.3945) (0.0223) (0.0143) (0.0147) (0.0062) (0.0225) 

        
SHCI 0.0763 0.9998 -0.0827 0.0148 0.1156 -0.0035 0.9913 

 
(0.0053) (0.2034) (0.0296) (0.0112) (0.0171) (0.0188) (0.0072) 

        
SZCI 0.1844 2.5058 -0.2965 0.0202 0.1171 -0.0117 0.9878 

 
(0.2632) (1.0771) (0.4620) (1.0481) (0.3389) (0.0626) (0.7346) 

Robust standard errors are in parenthesis. 

  

GARCH 1m  
0h  

0m        

HS300 0.0448 1.0360 -0.0315 0.0288 0.0450 0.9472 

 

(0.0136) (0.1635) (0.0495) (0.0212) (0.0054) (0.0216) 

       
SHCI 0.0325 1.0349 -0.018 0.0211 0.0471 0.9461 

 

(0.0093) (0.1234) (0.0088) (0.0069) (0.0058) (0.0081) 

       
SZCI 0.1248 2.5158 -0.1828 0.0388 0.0478 0.9423 

 

(0.0922) (1.8369) (0.0046) (0.0162) (0.0167) (0.0133) 
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Figure 1: Decomposition of risk premium and volatility feedback effect 

 


