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1 Introduction

Accurately modeling and forecasting asset return volatility is a critical skill in asset pricing, risk management, asset

allocation, and other financial applications. Since the seminal work by Engle (1982) and Bollerslev (1986),GARCH

volatility models have been developed and extended to explain various stylized facts of financial return and volatility,

such as volatility clustering, leverage effects, leptokurtosis, and long memory.

With the development of electronic trading, complete transaction and quote record data can be accessed easily,

which has encouraged the use of high frequency data. Andersen and Bollerslev (1998) show that the daily ag-

gregated squared intraday returns can be used as an accurate measure of latent volatility. During the past fifteen

years, many studies have tried to exploit the superior information contained in a wide range of realized measures

of volatility such as the 5-minute realized variance or realized kernel (RK, see Barndorff-Nielsen et al. (2008)) to

model and forecast volatility. Engle (2002) introduces the GARCH-X model, which includes the realized variance

as an exogenous variable in the volatility dynamics equation. To complete the GARCH-X model so that multi-step

volatility prediction is feasible, Engle and Gallo (2006) develop a multiplicative error model by specifying a separate

dynamic equation for the realized measure. Based on the same structure, Shephard and Sheppard (2010) propose

another extension of the GARCH-X model, called the HEAVY model. Çelik and Ergin (2014) conduct a thorough

comparison of the forecasting performances of various volatility models that use high frequency data.

Using a similar but more natural approach, Hansen et al. (2012) develop the Realized GARCH model, in which

a measurement equation is introduced to relate the realized measure directly to the latent conditional volatility.

The Realized GARCH model not only outperforms the other GARCH family models in terms of modeling and

forecasting volatility, it also maintains many attractive features of the conventional GARCH framework. A number

of studies have extended the classic Realized GARCH model and the model has been used in empirical finance

research. Hansen et al. (2014) develop a bi-variate version of the Realized GARCH to model conditional variance

and conditional Beta of stock returns. Hansen and Huang (2015) extend it to the Realized EGARCH model by

adopting a more flexible leverage function and allowing multiple realized measures. Watanabe (2012) and Louzis

et al. (2014) assume a skewed-t distribution in the Realized GARCH model and show its advantages for predicting

Value-at-Risk. Lunde and Olesen (2013) apply the model to forecast volatility in electricity markets. Banulescu

et al. (2015) use the extended Realized GARCHmodel to identify major volatility shocks during the recent financial

crisis. Hansen et al. (2015) demonstrate the capacity of the Realized GARCH framework to explain the variance

risk premium suggested in the CBOE VIX index.

Despite the popularity of the Realized GARCH model, this study documents that the specification of the classic
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Realized GARCH model is not sufficient for capturing the long memory, which is an important feature of volatility.

Long memory refers to the fact that the autocorrelation of the squared or absolute returns of financial assets, as

a proxy for underlying volatilities, decay at a slow rate. Financial volatility is widely accepted as a long memory

process (Ding et al. 1993; Bollerslev and Ole Mikkelsen 1996; Breidt et al. 1998; Yalama and Çelik 2013). Baillie

et al. (1996) propose a fractionally integrated GARCH model (FIGARCH) to model long memory volatility. Ebens

(1999) models realized volatility with a well-established univariate ARFIMA framework. Andersen et al. (2003)

use the fractional difference operators in FIGARCH models to model the realized variance. A similar structure is

discussed with a time-varying extension in Belkhouja and Boutahary (2011). Corsi (2009) proposes a heterogeneous

autoregressive (HAR) model of realized variance by arguing that a long memory process can be approximated using

a short-memory specification with a cascade structure of lags1. Todorova (2015) applies an extended HAR model,

in which the volatility of volatility is time-varying, to study the realized volatility dynamics of metal futures.

As a remedy, in this study we develop an extended model, the Realized HAR GARCH, by specifying the het-

erogeneous autoregressive (HAR) terms of realized volatility as in Corsi (2009). An empirical analysis of 29 return

series (two stock indices and 27 Dow Jones Industrial Average (DJIA) individual stocks) suggests that adding the

HAR terms can improve the model’s ability to capture the long memory feature in both latent and realized volatility.

Under several commonly used loss functions, we show that our new model specification outperforms the classic

Realized GARCH (1,1) model in multi-period volatility forecasting, both in-sample and out-of-sample2.

2 Econometric Methodology

2.1 Realized GARCH

Let rt be the return of an asset on date t, xt be the realized measure, and Ft be the information set generated by

{rt, xt, rt−1, xt−1, . . .}. Let h̃t denote log ht and x̃t denote log xt. The Realized GARCH model is given by

rt = µ+
√
htzt, ht = var(rt|Ft−1)

h̃t = ω + βh̃t−1 + γx̃t−1

x̃t = ξ + φh̃t + τ(zt) + ut

1We thank the anonymous referee to point this out.
2 We also compared the forecasting performance between our new model and FIGARCH model, a classic long-memory volatility model

within the GARCH framework and found the Realized HAR GARCH model empirically superior. Results are presented in an unpublished
supplementary appendix
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where zt ∼ N(0, 1), ut ∼ N(0, σ2u), with zt and ut being independent. The second equation is the GARCH equation

where the lagged the realized measure replaces the lagged square return. The third equation is the measurement

equation that takes the realized measure as a measurement of the latent volatility. τ(zt) = τ1zt + τ2(z
2
t − 1) is

the leverage function, which captures the asymmetric dependence between return and volatility. One advantage of

this measurement equation is that the model can deliver close-to-close volatility without pre-manipulation of the

opening hour data-based realized measures.

2.2 Realized HAR GARCH

In this section we adopt a HAR specification for the realized measures in the GARCH equation. The Realized HAR

GARCH model is then defined by extending the volatility dynamic equation:

h̃t = ω + βh̃t−1 + γdx̃t−1 + γw
4

∑5
i=2 x̃t−i + γm

17

∑22
i=6 x̃t−i (1)

After simple reparameterization, equation 1 can be written as:

h̃t = ω + βh̃t−1 + γ∗d x̃t−1 + γ∗w
5

∑5
i=1 x̃t−i + γ∗m

22

∑22
i=1 x̃t−i (2)

where γ∗d = γd − γw
4 ,γ∗w = 5

(γw
4 −

γm
17

)
, and γ∗m = 22

17γm. Following Corsi (2009), those components of realized

measures are related to information from the last day, last week, and last month. Unlike the Realized GARCH

model with multiple realized measures, our variant has multiple lags of one realized measure. Therefore, only

one measurement equation is needed. The current framework can be easily extended to multiple realized measures

cases and we leave this for further studies. Compared to classic autoregressive specifications with 22 lags, the HAR

structure has far fewer parameters, yet still explicitly preserves information from the 22 lags.

In contrast to the HAR model, the proposed model focuses on the latent volatility corresponding to inter-day

returns rather than on realized measures corresponding to intra-day returns. For most applications, such as pricing

derivatives and calculating Value-at-Risk, it is important to take overnight returns into account. Such an adjustment

is not part of the HAR model, whereas the Realized HAR GARCH model makes the adjustment automatically via

the measurement equation.

The model can easily preserve an ARMA type structure by substituting xt in the GARCH equation:

h̃t = µh + (β + φγd)ht−1 +
φγw

4

5∑
i=2

h̃t−i +
φγm
17

22∑
i=6

h̃t−i + γdεt−1 +
γw
4

5∑
i=2

ε̃t−i +
γm
17

22∑
i=6

ε̃t−i (3)
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where µh = ω + ξ(γd + γw + γm) and εt = τ(zt) + ut. This formula is a restricted ARMA(22,22) for h̃t.

Compared with its original Realized GARCH counterpart3, the new volatility dynamics is more flexible in capturing

the autocorrelation structure of the latent volatility.

For the measurement equation, we have

x̃t = µx + (β + φγd)x̃t−1 +
φγw

4

5∑
i=2

x̃t−i +
φγm
17

22∑
i=6

x̃t−i + εt − βεt−1 (4)

where µx = φω+ ξ(1−β). Interestingly, the reduced form of the dynamics of x̃t is not AR(22) as the HAR model

suggests. It is an ARMA (22,1) model with certain parameter constraints. This implies, although this is not the main

concern of this study, that the Realized HAR GARCH model may generate richer dynamics for realized measures

than the original HAR model.

3 Data

We use data on the daily close-to-close returns and daily realized measures of the two indices (S&P 500 index and

NASDAQ 100 index) and 27 liquidly traded individual stocks to illustrate the performance of our new model 4 We

use the realized kernel (RK) proposed by Barndorff-Nielsen et al. (2008) as the realized measure because it is robust

to market microstructure noise. Our sample period is from 2002/01 to 2013/12. As the first 22 observations are

used to calculate monthly volatility, the effective sample covers 2002/02-2013/12.

Table 1 provides the summary statistics for the daily close-to-close returns and the logarithms of daily realized

kernels (log(RK)). All of the returns exhibit excess kurtosis, indicating that the distribution is fat-tailed. One can

easily extend our model with a fat-tailed distribution; however, we leave this for further research as the current study

focuses on the correlation structure of volatility. For log(RK), the factional integrated parameter d is estimated with

local Whittle estimator proposed by Robinson (1995).5 In Table 2, we present the estimated values of d for the full

sample and three sub-samples divided by the recent financial crisis period. Most of the series have d > 0.5, which

indicates that log(RK) has infinite variance and appears to be a non-stationary long-memory process. In addition,

we tend to find a larger d on average during the financial crisis period than in the other two sub-samples. Earlier

volatility studies tend to find a long memory parameter d of the level or logarithm of realized variance slightly less

than 0.5 and conclude that the realized variance is a stationary long memory process. However, in more recent
3The Realized GARCH’s corresponding reduced form is a restricted ARMA(1,1).
4 We use the same 27 individual stock as in Hansen and Huang (2015) and add two stock indices. The daily returns are collected from

Yahoo Finance. The realized kernels of the two stock indices are collected from the Oxford-Man Institute’s Realized Library, and the realized
kernels of individual stocks are kindly provided by Professor Asger Lunde.

5Estimating d with the 2-step exact local Whittle estimator of Shimotsu (2010) gives very similar results.

5



Table 1: Summary statistics for return and log(RK)

Return Log(RK)

Obs Mean Std Skew Kurt Med Mean Std Q1 Med Q3 d

AA 2976 -0.04 2.74 -0.19 8.16 0.00 1.14 0.86 0.55 1.00 1.55 0.66
AIG 2971 -0.07 4.34 -0.27 40.01 -0.03 1.07 1.29 0.15 0.88 1.77 0.66
AXP 2971 0.04 2.43 0.10 10.43 0.00 0.60 1.19 -0.32 0.37 1.35 0.71
BA 2971 0.05 1.88 0.07 3.69 0.07 0.60 0.83 -0.01 0.46 1.08 0.66
BAC 2980 -0.01 3.38 -0.34 23.52 0.03 0.70 1.30 -0.29 0.56 1.43 0.71
C 2979 -0.06 3.64 -0.50 34.12 0.00 0.90 1.26 -0.04 0.71 1.64 0.66

CAT 2975 0.05 2.10 -0.11 5.10 0.06 0.73 0.83 0.17 0.60 1.16 0.66
CVX 2975 0.05 1.67 0.02 13.63 0.11 0.31 0.84 -0.27 0.22 0.79 0.64
DD 2974 0.03 1.78 -0.24 5.85 0.03 0.50 0.85 -0.11 0.37 1.01 0.62
DIS 2972 0.05 1.91 0.28 6.11 0.05 0.54 0.89 -0.12 0.38 1.04 0.65
GE 2976 0.00 1.99 0.04 9.48 0.00 0.42 1.05 -0.37 0.24 1.01 0.70
HD 2973 0.02 1.90 0.04 5.99 0.01 0.61 0.88 -0.01 0.44 1.07 0.66
IBM 2972 0.02 1.52 0.02 6.64 0.02 0.11 0.85 -0.49 -0.05 0.55 0.66
INTC 2972 0.00 2.20 -0.55 7.51 0.00 0.84 0.80 0.29 0.73 1.28 0.64
JNJ 2973 0.03 1.16 -0.70 23.55 0.02 -0.27 0.88 -0.88 -0.43 0.19 0.68
JPM 2977 0.03 2.75 0.27 13.41 0.00 0.80 1.13 -0.03 0.58 1.45 0.67
KO 2972 0.03 1.24 0.07 11.23 0.04 -0.10 0.82 -0.66 -0.23 0.34 0.64
MCD 2973 0.05 1.46 -0.18 7.15 0.09 0.16 0.90 -0.49 0.07 0.72 0.65
MMM 2971 0.04 1.45 -0.22 5.57 0.06 0.12 0.80 -0.39 0.02 0.53 0.62
MRK 2970 0.02 1.74 -0.42 9.61 0.03 0.39 0.86 -0.21 0.28 0.87 0.61
MSFT 2971 0.02 1.80 0.11 8.28 0.00 0.45 0.81 -0.14 0.30 0.93 0.63
PG 2973 0.03 1.14 -0.21 6.77 0.03 -0.18 0.78 -0.71 -0.30 0.22 0.59
T 2967 0.02 1.63 0.25 7.43 0.06 0.37 0.95 -0.30 0.21 0.89 0.66

UTX 2971 0.05 1.62 0.19 5.64 0.05 0.31 0.81 -0.24 0.20 0.74 0.62
VZ 2972 0.02 1.58 0.12 6.94 0.04 0.31 0.91 -0.33 0.14 0.80 0.64

WMT 2973 0.02 1.31 0.16 5.35 0.02 0.07 0.82 -0.49 -0.06 0.49 0.65
XOM 2974 0.04 1.60 -0.02 12.63 0.07 0.24 0.87 -0.35 0.14 0.69 0.64

NASDAQ 2985 0.03 1.45 -0.04 4.74 0.09 -0.46 0.96 -1.14 -0.56 0.13 0.62
SP500 2982 0.02 1.29 -0.17 8.60 0.07 -0.50 1.06 -1.26 -0.61 0.11 0.61

Note: Returns are reported as percentage changes and RK is reported in the corresponding scale. Kurt is the excess kurtosis. Med is the
median. Q1 and Q3 are the first and third quartiles, respectively. Obs is the effective sample size. The unbalanced sample size is caused by
the trimming procedure that removes short trading days (where high-frequency data spanned less than 20,000 seconds). Due to the difference
of trading activities, it is possible that different stocks have slightly different simple sizes. The difference between the two indices is due to
the cleaning process described in Realized Library’s website.
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volatility studies, the empirical results on whether d is greater than 0.5 are mixed, depending on the asset classes,

the sample periods and the sampling frequency of the realized measure. Empirical evidences of long memory

and non-stationarity in volatility have also been reported by Yalama and Çelik (2013) and Baruník and Dvor̆áková

(2015).

Table 2: Summary statistics of estimated fractional integrated parameter d for log(RK)

Sample Mean Std Min Q25% Median Q75% Max

Full 0.650 0.029 0.588 0.628 0.651 0.663 0.715
Pre-crisis 0.657 0.048 0.524 0.650 0.666 0.681 0.726
Crisis 0.748 0.062 0.609 0.715 0.757 0.788 0.855

Post-crisis 0.592 0.053 0.455 0.573 0.597 0.627 0.680
Note: Full : 201202-201312, pre-crisis: 200202-200707, crisis:200708-200907, post-crisis: 200908-201312.

Figure 1 plots the return, realized kernel, and log(RK) for four series: the two indices, the stock with the highest

average market cap (Exxon Mobil, XOM), and the stock with the highest average turnover (Alcoa Inc., AA) over the

sampling period. The results for the remaining series are available upon request.

4 Estimation

With the help of realized measures, the return and volatility shock (zt, ut) can be recursively determined. Given the

initial value h0, which we set as an additional parameter, we can calculate ht by iteration. Therefore, the parameters

can be estimated via the maximum likelihood estimation. The joint log-likelihood function is given by

logL({r, x}nt=1; θ) = −1

2

n∑
t=1

[log(2π) + log(ht) + r2t /ht]︸ ︷︷ ︸
=l(r)

− 1

2

n∑
t=1

[log(2π) + log(σ2u) + u2t /σ
2
u]︸ ︷︷ ︸

=l(x|r)

.

where the first part of the right hand-side of the equation is called partial likelihood since it only focuses on the

goodness of fit for the returns.

As the estimated values of the long memory parameter d for log(RK) are mostly greater 0.5, the volatility

equation in our model is augmented with a non-stationary long memory process. There has been no thorough

investigation for the validity of the conventional MLE or QMLE statistical inference, such as the consistency and

asymptotic distribution, for the Realized GARCH framework with non-stationary covariates.6 Within the GARCH
6We thank one of the referees for pointing out this.
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framework, Jensen and Rahbek (2004) show the conventional QMLE estimator for ARCH and GARCH models

remains consistent with a Gaussian limit distribution regardless of the process being stationary or non-stationary.

Han andKristensen (2014) and Han (2015) investigate the asymptotic properties of GARCH-Xmodels with possibly

persistent and long memory covariates. They find that the standard inferential tools for the QMLE parameters are

quite robust to the level of persistence of the covariates in the GARCH equation. In this paper we just follow

Hansen et al. (2012) and calculate the conventional sandwich form robust covariance matrix and leave the thorough

asymptotic analysis as an interesting question for further research.

4.1 Estimation Results

To save space, we only present the results for the S&P500 based using on close-to-close returns and log(RK) for the

Realized HAR GARCH model in the full sample period:

rt = +0.023
(0.024)

+
√
htzt

h̃t+1 = +0.252
(0.043)

+ 0.388
(0.093)

h̃t + 0.425
(0.024)

x̃t−1 + 0.114
(0.073)

(
1

4

5∑
i=2

x̃t−i

)
+ 0.075

(0.021)

(
1

17

22∑
i=6

x̃t−i

)
x̃t = −0.417

(0.027)
+ 0.953

(0.032)
h̃t − 0.085

(0.012)
zt + 0.116

(0.009)
(z2t − 1) + ut

with σ̂2u = 0.237
(0.007)

. The persistent parameter β + φ(γd + γw + γm) = 0.976.

The corresponding estimates for the Realized GARCH model are:

rt = +0.024
(0.019)

+
√
htzt

h̃t+1 = +0.161
(0.015)

+ 0.601
(0.024)

h̃t + 0.394
(0.024)

x̃t−1

x̃t = −0.417
(0.026)

+ 0.950
(0.031)

h̃t − 0.085
(0.011)

zt + 0.117
(0.009)

(z2t − 1) + ut

with σ̂2u = 0.240
(0.019)

. The persistent parameter β + φγ = 0.974. The numbers in parentheses are the robust standard

errors for each of the point estimates. Their signs and magnitudes are in accordance with the theoretical assumptions

and the estimation result reported in Hansen et al. (2012)7. These calculations lead to several notable findings. 1)The

Realized HARGARCHmodel has significantly lower β when the persistent parameter increases a little. This means

that better information contained in the lagged conditional variance can be partially explained by additional weekly

and monthly components. 2) The statistical significance of these two terms can be established using the LR statistics
7 Such as: 1) the persistent parameter is close to one, 2) the leverage effect exists indicated by a negative d1. 3) β is much lower compared

with transitional GARCH models that highlights the importance of realized measures.
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8 3) γd > γw > γm indicates a declining information content in the cascade structure. 4) The measurement equation

remains almost the same across the different models.

Table 3: Full sample estimates for the Realized GARCH model

µ ω β γd ξ φ d1 d2 σ2u

AA 0.001 0.214 0.565 0.410 -0.426 1.000 -0.054 0.063 0.143
AIG -0.026 0.240 0.434 0.610 -0.324 0.884 -0.030 0.052 0.204
AXP 0.054 0.176 0.551 0.446 -0.369 0.978 -0.056 0.065 0.162
BA 0.071 0.174 0.612 0.353 -0.436 1.040 -0.046 0.079 0.147
BAC 0.008 0.239 0.416 0.613 -0.352 0.918 -0.060 0.048 0.173
C -0.018 0.209 0.439 0.589 -0.305 0.914 -0.060 0.076 0.168

CAT 0.056 0.258 0.529 0.411 -0.549 1.079 -0.065 0.040 0.138
CVX 0.064 0.153 0.511 0.432 -0.315 1.063 -0.101 0.048 0.130
DD 0.035 0.117 0.532 0.461 -0.210 0.952 -0.070 0.047 0.152
DIS 0.054 0.145 0.602 0.381 -0.336 0.994 -0.071 0.051 0.156
GE 0.020 0.154 0.543 0.453 -0.312 0.969 -0.038 0.046 0.163
HD 0.045 0.123 0.571 0.429 -0.245 0.951 -0.043 0.051 0.147
IBM 0.027 0.179 0.523 0.467 -0.357 0.964 -0.062 0.034 0.140
INTC 0.019 0.168 0.515 0.510 -0.264 0.898 -0.034 0.032 0.130
JNJ 0.036 0.045 0.592 0.402 -0.122 0.961 -0.023 0.064 0.163
JPM 0.027 0.169 0.490 0.533 -0.280 0.924 -0.053 0.064 0.150
KO 0.030 0.070 0.556 0.443 -0.156 0.937 -0.047 0.061 0.153
MCD 0.060 0.099 0.661 0.311 -0.297 1.040 -0.059 0.075 0.168
MMM 0.042 0.151 0.549 0.400 -0.342 1.044 -0.065 0.040 0.156
MRK 0.025 0.192 0.598 0.347 -0.487 1.079 -0.053 0.051 0.181
MSFT 0.032 0.201 0.510 0.465 -0.377 0.985 -0.026 0.029 0.140
PG 0.028 0.062 0.537 0.392 -0.162 1.080 -0.047 0.058 0.160
T 0.037 0.080 0.547 0.445 -0.151 0.960 -0.061 0.063 0.177

UTX 0.048 0.137 0.550 0.441 -0.269 0.950 -0.052 0.069 0.156
VZ 0.030 0.078 0.589 0.387 -0.178 1.008 -0.054 0.061 0.164

WMT 0.015 0.079 0.615 0.331 -0.225 1.102 -0.027 0.059 0.145
XOM 0.048 0.131 0.507 0.449 -0.262 1.035 -0.104 0.050 0.130

NASDAQ 0.037 0.353 0.538 0.456 -0.758 0.950 -0.139 0.053 0.192
SP500 0.024 0.161 0.601 0.394 -0.417 0.950 -0.085 0.117 0.240

Average 0.032 0.157 0.544 0.440 -0.320 0.986 -0.058 0.057 0.160
Note: Average is the average value of each column. γd is significant at the 1% level in most cases.

The estimates for all 29 series in the full sample period are presented in Tables 3 and 4. To save space, we do

not report the associated standard errors. Most of those parameters are significant, except for the mean in the return

equation. The parameters associated with the realized measures are significant at the 1% level in most cases. The

findings for the S&P500 series are similar to those in the averaged parameters and in most individual cases. The

significance of the weekly and monthly components are established based on the LR statistic withH0 : γw = γm =

8H0 : γw = γm = 0. The corresponding LR statistic is 32.91 (p < 0.001). The test statistic is illustrated in Table 5.
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Table 4: Full sample estimates for the Realized HAR GARCH model

µ ω β γd γw γm ξ φ d1 d2 σ2u

AA -0.001 0.328 0.271 0.460 0.133 0.116 -0.408 0.992 -0.056 0.062 0.141
AIG -0.025 0.341 0.147 0.622 0.143 0.156 -0.333 0.901 -0.028 0.055 0.197
AXP 0.054 0.264 0.317 0.486 0.104 0.094 -0.371 0.980 -0.056 0.064 0.159
BA 0.070 0.332 0.234 0.416 0.180 0.115 -0.432 1.039 -0.047 0.078 0.144
BAC 0.009 0.334 0.134 0.647 0.158 0.121 -0.341 0.916 -0.058 0.046 0.168
C -0.017 0.256 0.246 0.615 0.076 0.118 -0.290 0.910 -0.059 0.073 0.165

CAT 0.058 0.452 0.144 0.467 0.195 0.105 -0.545 1.077 -0.064 0.040 0.134
CVX 0.064 0.287 0.047 0.497 0.307 0.059 -0.304 1.054 -0.102 0.047 0.126
DD 0.035 0.194 0.178 0.516 0.221 0.092 -0.207 0.952 -0.070 0.045 0.149
DIS 0.053 0.319 0.083 0.468 0.285 0.142 -0.329 0.990 -0.072 0.050 0.152
GE 0.019 0.268 0.156 0.521 0.210 0.129 -0.297 0.958 -0.040 0.050 0.159
HD 0.045 0.219 0.204 0.491 0.211 0.108 -0.245 0.952 -0.043 0.052 0.144
IBM 0.027 0.293 0.214 0.512 0.201 0.068 -0.358 0.965 -0.062 0.034 0.138
INTC 0.016 0.284 0.113 0.574 0.234 0.145 -0.263 0.901 -0.036 0.029 0.126
JNJ 0.035 0.090 0.236 0.469 0.202 0.098 -0.124 0.956 -0.023 0.064 0.160
JPM 0.025 0.272 0.129 0.597 0.212 0.116 -0.275 0.923 -0.053 0.062 0.145
KO 0.030 0.126 0.203 0.500 0.199 0.123 -0.153 0.931 -0.047 0.061 0.150
MCD 0.062 0.212 0.249 0.393 0.167 0.145 -0.290 1.032 -0.058 0.075 0.165
MMM 0.043 0.267 0.191 0.459 0.184 0.098 -0.339 1.038 -0.064 0.040 0.152
MRK 0.026 0.367 0.203 0.410 0.178 0.121 -0.478 1.075 -0.052 0.051 0.177
MSFT 0.033 0.323 0.164 0.521 0.188 0.119 -0.358 0.968 -0.028 0.030 0.137
PG 0.027 0.116 0.161 0.448 0.207 0.087 -0.159 1.066 -0.048 0.058 0.157
T 0.040 0.131 0.173 0.512 0.192 0.132 -0.143 0.957 -0.059 0.062 0.172

UTX 0.047 0.224 0.228 0.494 0.173 0.113 -0.263 0.946 -0.053 0.068 0.153
VZ 0.031 0.134 0.270 0.442 0.161 0.099 -0.176 1.006 -0.054 0.061 0.162

WMT 0.016 0.157 0.222 0.391 0.193 0.100 -0.221 1.098 -0.027 0.058 0.142
XOM 0.048 0.228 0.119 0.501 0.259 0.056 -0.259 1.032 -0.105 0.049 0.127

NASDAQ 0.036 0.610 0.214 0.509 0.170 0.124 -0.753 0.945 -0.142 0.051 0.187
SP500 0.023 0.252 0.388 0.425 0.114 0.075 -0.417 0.953 -0.085 0.116 0.237

Average 0.032 0.253 0.187 0.497 0.192 0.110 -0.295 0.986 -0.054 0.054 0.152
Note: Average is the average value of each column. γd, γw, γm are significant at 1% level in most cases.
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0. If we label the Realized HAR GARCH model as RHG and the Realized GARCH model as RG, then the statistic

can be written as

LR = 2(logLRHG − logLRG)

The statistic follows χ2(2), under the null hypothesis. The results are reported in Table 5 for all of the series under

different sample periods. Each column gives the total number of series with an LR statistic that is significant at

different levels. For example, in the sub-prime crisis period, 15 out of 29 series reject the null at the 1% significance

level; 8 of the remaining 14 series reject the null at the 5% significance level; 2 out of the remaining 6 series reject the

null at the 10% significance level; and 4 series fail to reject the null even at the 10% level. Although the significance

levels of the differences are lower during the sub-prime crises, the results highlight the importance of γw and γm in

terms of model fit 9.

Table 5: Summary of the LR Test of H0 : γw = γm = 0

RHG*** RHG** RHG* RHG Total

Full 29 0 0 0 29
Pre-crisis 29 0 0 0 29
Crisis 15 8 2 4 29

Post-crisis 29 0 0 0 29
Note: Full: 2002/02-2013/12; pre-crisis: 2002/02-2007/07; crisis: 2007/08-2009/07; post-crisis:
2009/08-2013/12. The model name in each row indicates the model with the larger loglikeli-
hood.The following asterisks indicate the significance level of the difference: *** = 1%, ** =
5%, and *=10%.

4.2 Autocorrelation Functions of Conditional Variance and Realized Variance

In this section, we discuss the autocorrelation structure of the Realized HARGARCH using plots of the autocorrela-

tion function (ACF). As in Section 3, we only report the results for four selected series, i.e., S&P 500, NASDAQ 100,

AA, and XOM. The results of the remaining series are very similar and available upon request. Figure 2 provides

insight into whether the model is consistent with the correlation structure of its fitted latent volatility. The dash line

is the ACF of the logarithmic latent volatility (h̃t), calculated with the help of the population spectral density for

ARMAmodels10, as in equation 3 (and its Realized GARCH counterpart); the solid line is the sample-ACF (SACF)

of the actual fitted h̃t. If the model is internally consistent, the two lines should be close to each other. It is clear that

the Realized GARCH is only able to capture the autocorrelation structure over the short-term, whereas the Realized
9The measurement equation of the Realized HAR GARCH model has slightly lower residual variances than the standard Realized

GARCH. This probably indicates that the new specification also improves the fitting of the measurement equation. We thank the anony-
mous referee to point this out.

10See, for example, Section 6.1 of Hamilton (1994)
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HAR GARCH can capture the structure over a much longer horizon.

Figure 3 provides insight into whether the model is able to capture the correlation structure of the market volatil-

ity. To do this, we plot the SACF of the logarithmic realized kernel x̃t with a solid line and the ACF of x̃t calculated

using equation 4 and its Realized GARCH counterpart. It is obvious that for the classic Realized GARCH (1,1)

model, the theoretical ACF starts to diverge from the SACF at around 10 lags11. In contrast, the Realized HAR

GARCH model, which only introduces two more parameters, is able to capture the autocorrelation structure of the

realized kernel and conditional variance for substantially longer horizons.

5 Multi-period Volatility Forecasting

Unlike the GARCH-X model, which can only produce a one-step ahead prediction of conditional variance, the

more comprehensive Realized GARCH class models can predict multi-period conditional variance. Having demon-

strated the superior performance of the Realized HAR GARCH model over the classic Realized GARCH model in

fitting correlation structures, we now compare their out-of-sample volatility forecast performance. In this section,

“Multi-period” means forecast conditional volatility in k days. In contrast to a one-step forecast, which can be

calculated directly from equation 1, the log-linear specification complicates the multi-period forecast. Because

E(exp(log ht+k)) 6= expE(log ht+k), the distributional aspect of log ht+k must be considered to produce an un-

biased forecast of ht+k. To avoid the complexity of analytical formulas, we use a simple simulation method with

empirical distributions to calculate the forecast. The last 520 observations are used for out-of-sample comparison,

which means that each day in the out-of-sample period has 20 “future” volatilities to be compared. The procedure

for obtaining ĥt+k at time t is as follows:

1. Estimate parametersΘt using estimation data ranging from t−2399 to t. The one-step forecast can be directly

calculated by equation 1 and its Realized GARCH counterpart.

2. If k > 1, suppose we have them-period forecast ĥt+m. Then calculate the 2400 pairs ofWt = {(zs, us)|s =

t, t − 1, ..., t − 2399} based on the estimation data and Θt. Draw 5000 random pairs from Wt and simu-

late x̃t+m via the measurement equation (for the Realized HAR GARCH model, update the weekly volatility∑5
i=2 x̃t+m−i and monthly volatility

∑22
i=6 x̃t+m−i accordingly). Calculate the logarithm conditional volatil-

11We also check the Realized GARCH (p,q) with p, q up to 5, which has eight more parameters, but it fails to substantially alleviate the
problem.
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(d) XOM

Note: The dashed line is the theoretical ACF of log(ht) and the solid line is the SACF of the actual fitted log(ht). A large deviation
between the two indicates an internal inconsistency in approximating the long-memory property.

Figure 2: Theoretical and actual autocorrelation function on log(ht) for the Realized GARCH and Realized HAR
GARCH model
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(b) NASDAQ 100
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(c) AA
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(d) XOM

Note: The dashed line is the theoretical ACF of log(RK) for the Realized HAR GARCH model, the dotted line is the theoretical ACF of
log(RK) for the Realized GARCH model and the solid line is the sample-ACF (SACF) of the actual log(RK). A large deviation indicating a
lack of ability to replicate the correlation structure of market volatility.

Figure 3: Theoretical and actual autocorrelation function on log(RK) for the Realized GARCH and Realized HAR
GARCH model
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ity h̃t+m+1. The (m+ 1)-period forecast ĥt+m+1 is then the sample average of 5000 simulated results:

ĥt+m+1 =
1

5000

5000∑
1

exp(h̃t+m+1)

3. Repeat the process untilm = k.

To evaluate the forecast performance, we use the adjusted realized kernel as the volatility proxy. The adjustment

is needed because the realized kernel is calculated based on opening hour data, whereas the latent volatility measures

the variation in close-to-close returns. In this study, we use a simple adjustment method by inflating the realized

kernel to match the volatility of the close-to-close return on average. That is

RKAdj
t =

∑T
s=1 r

2
s∑T

s=1RKs

RKt

where rs and RKs are the close-to-close returns and daily realized kernels, respectively.

We use three common evaluation criteria, mean squared error (MSE), mean absolute error (MAE), and the quasi-

likelihood loss function (QLIKE), to compare the forecasting performance of the Realized GARCH model and the

Realized HAR GARCH model. MSE and QLIKE are robust loss functions that provide consistent ranking with

conditionally unbiased volatility proxies (Patton (2011)). The MAE, although popular, is not a robust loss function.

The fact that QLIKE penalizes underestimationmore than overestimation provides an additional motivation for using

it to evaluate volatility models, especially for risk management applications. The definitions of the loss functions

are as follows:

MSE : L(σ̂2, h) = (σ̂2 − h)2

MAE : L(σ̂2, h) = |σ̂ − h|

QLIKE : L(σ̂2, h) = log h+
σ̂2

h

where σ̂ is the volatility proxy which, in this study, is the adjusted realized kernel. h is the forecast for a given model.

We compare their forecasting performances over four time horizons: one day, one week (5 days), two weeks (10

days), and one month (20 days). The multi-period forecasts are evaluated with the proxy and predicted conditional

variance of the last day of the time horizon. As an example, the 10-day volatility forecast for all four series is

provided in Figure 4.
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It can be seen that the Realized GARCHmodel tends to report a higher volatility forecast than the Realized HAR

GARCH model when the volatility is spiking up, as the Realized GARCH model can only use limited information

about the correlation structure through γd. Therefore, the one-step forecast value becomes the dominating factor of

the k-step forecast. The Realized HAR GARCH model performs forecasts using both the one-step forecast and the

additional information about the correlation structure captured by γw and γm. These two parameters are trained by

the data in the estimation window to react properly to volatility spikes in a relatively longer time horizon.

These visualized results are confirmed by all three loss functions. As seen in Table 6, the Realized HARGARCH

model outperforms the original Realized GARCHmodel for all four series under all forecast horizons. The statistical

significance of the values of the loss functions is also calculated using Diebold-Mariano statistics. Each column

gives the total number of series within the category indicated on the header line.

Table 6: Summary of k-steps ahead forecast difference via DM statistics

Improvement

RHG*** RHG** RHG* RHG RG Mean Q1 Median Q3

RMSE
k = 1 14 7 4 4 0 2.54% 1.41% 2.06% 3.70%
k = 5 20 3 3 3 0 6.77% 3.98% 6.08% 7.77%
k = 10 27 0 2 0 0 12.32% 7.26% 10.67% 13.37%
k = 20 29 0 0 0 0 19.07% 12.22% 19.07% 22.03%

MAE
k = 1 22 6 0 1 0 3.73% 3.03% 3.87% 4.77%
k = 5 25 3 0 1 0 7.78% 5.59% 7.13% 9.35%
k = 10 29 0 0 0 0 14.99% 10.43% 14.77% 17.96%
k = 20 29 0 0 0 0 24.56% 17.07% 24.28% 28.83%

QLK
k = 1 14 0 4 11 0 3.54% 1.69% 3.28% 5.29%
k = 5 17 5 7 4 1 6.62% 4.62% 6.40% 8.37%
k = 10 26 0 0 3 0 13.40% 10.47% 12.37% 17.36%
k = 20 28 0 1 0 0 24.15% 16.62% 23.48% 28.89%

Note: The model name in each column indicates the model with the best forecast accuracy. The following asterisks indicate
the significance level of the difference: *** = 1%, ** = 5% and *=10%. The three panels are associated with the three loss
functions: MSE (reported as RMSE), MAE, and QLK. For example, the last row indicates that for the 20-steps ahead forecast,
RHG out preforms RG 28/29 times at the 1% significance level and 1/29 times at the 10% significance level under the QLK
loss function. Q1 and Q3 are the first and third quartiles of the corresponding loss function’s value.

The Diebold-Mariano statistics focus on the difference of loss function dt = L(σ̂2, hRGt ) − L(σ̂2, hRHGt ) by

testing whether the mean of d equals zero. The statistic is defined as

S =
d̄√

L̂RV /T
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where d̄ = 1
T

∑T
t=1 dt, LRV = γ0 + 2

∑H
j=1K

(
j
H

)
cov(dt, dt−j). K(.) is the Bartlett kernel function used in

the Newy-West estimation of LRV, and H is the optimal bandwidth parameter estimated by Andrews (1991).

We also calculate the scaled difference of the loss functions as

Improvement =
L(σ̂2, hRG)− L(σ̂2, hRHG)

L(σ̂2, hRG)

The larger the value, the greater the “improvement” in the Realized HAR GARCH model over the original Realized

GARCH model.

This study identifies several advantages of the Realized HAR GARCH model. 1) The Realized HAR GARCH

outperforms the Realized GARCH in almost all cases (forecast horizons and loss functions). 2) The improvement

is significant for a large proportion of all cases. 3) The significance of the difference tends to grow as the forecast

horizon increases, eventually becoming significant at the 1% level. 4) This finding is confirmed by an increasing

average “improvement”. 5) Only 1 out of 3× 4× 29 cases report the Realized GARCH as better than the Realized

HAR GARCH. However, the difference is neither large (the scaled difference is 0.65%) nor statistically significant.

6 Conclusions

The recently proposed Realized GARCH model has received considerable attention in the financial econometrics

literature. However, we determine that the benchmark model specification is not capable of modeling the long

memory of volatility. We propose a parsimonious remedy, the Realized HAR GARCH model, which incorporates

the HAR structure of realized variance into the GARCH equation. Using a dataset of 29 return series over a 12-

year period that encompasses the dot-com bubble and the financial crisis, we compare the empirical performance

of the Realized HAR GARCH model with that of the original Realized GARCH model. The results show that the

new model specification is better for capturing the long memory feature of underlying volatility and provides more

accurate multi-period out-of-sample volatility forecasts over different forecast horizons.

We leave two interesting questions for further research. First, FIGARCHmodels have been used on daily returns

to model the long memory of underlying volatility. It would be interesting to incorporate the realized measures of

volatility into the FIGARCH framework to exploit the more accurate information. Second, in this study we focus

on the long memory volatility of stock returns. It has been documented that long memory exists in the volatilities

of other asset classes such as bonds, exchange rates and commodities. Researchers could examine the empirical

performance of our Realized HAR GARCH models in these markets.
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