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Outline of this talk

The volatility surface: Stylized facts

A remarkable monofractal scaling property of historical
volatility

Fractional Brownian motion (fBm)

The Rough Fractional Stochastic Volatility (RFSV) model

The Rough Bergomi (rBergomi) model

Tentative numerical results
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The implied volatility smile

The implied volatility σBS(k , τ) of an option (with
log-moneyness k and time to expiration τ) is the value of the
volatility parameter in the Black-Scholes formula required to
match the market price of that option.

Plotting implied volatility as a function of log-moneyness k
generates the volatility smile.

Plotting implied volatility as a function of both k and τ
generates the volatility surface, explored in detail in, for
example, [The Volatility Surface].
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The SPX volatility surface as of 15-Sep-2005

We begin by studying the SPX volatility surface as of the
close on September 15, 2005.

Next morning is triple witching when options and futures set.

We will plot the volatility smiles, superimposing an SVI fit.

SVI stands for “stochastic volatility inspired”, a well-known
parameterization of the volatility surface.
We show in [Gatheral and Jacquier] how to fit SVI to the
volatility surface in such a way as to guarantee the absence of
static arbitrage.

We then interpolate the resulting SVI smiles to obtain and
plot the whole volatility surface.
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The March expiry smile as of 15-Sep-2005

Figure 1: The March expiry smile as of 15-Sep-2005.
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SPX volatility smiles as of 15-Sep-2005

Figure 2: SPX volatility smiles as of 15-Sep-2005.
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SPX volatility smiles as of 15-Sep-2005

Figure 3: SVI fit superimposed on smiles.
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The SPX volatility surface as of 15-Sep-2005

Figure 4: The March expiry smile as of 15-Sep-2005 – the SVI fit looks
OK!



Implied volatility Stochastic volatility Realized volatility The RFSV model Pricing

The SPX volatility surface as of 15-Sep-2005

Figure 5: The SPX volatility surface as of 15-Sep-2005 (Figure 3.2 of
The Volatility Surface).
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Interpreting the smile

We could say that the volatility smile (at least in equity
markets) reflects two basic observations:

Volatility tends to increase when the underlying price falls,

hence the negative skew.

We don’t know in advance what realized volatility will be,

hence implied volatility is increasing in the wings.

It’s implicit in the above that more or less any model that is
consistent with these two observations will be able to fit one
given smile.

Fitting two or more smiles simultaneously is much harder.

Heston for example fits a maximum of two smiles
simultaneously.
SABR can only fit one smile at a time.
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Term structure of at-the-money skew

What really distinguishes between models is how the
generated smile depends on time to expiration.

In particular, their predictions for the term structure of ATM
volatility skew defined as

ψ(τ) :=

∣∣∣∣ ∂∂k σBS(k , τ)

∣∣∣∣
k=0

.
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Term structure of SPX ATM skew as of 15-Sep-2005

Figure 6: Term structure of ATM skew as of 15-Sep-2005, with power
law fit τ−0.44 superimposed in red.



Implied volatility Stochastic volatility Realized volatility The RFSV model Pricing

SPX volatility surfaces from 2005 to 2011

Figure 7: SPX volatility surfaces over the years as of the close before
September SQ.
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Observations

We note that although the levels and orientations of the
volatility surfaces change over time, their rough shape stays
very much the same.

Let’s now look at the term structure of ATM skew on these
dates.
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Term structure of SPX ATM skew as over the years

Figure 8: SPX ATM skew over the years as of the close before
September SQ. Power-laws fits are superimposed.
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Conclusion

The shape of the volatility surface seems to be more-or-less
stable.

It’s then natural to look for a time-homogeneous model.

The term structure of ATM volatility skew

ψ(τ) ∼ 1

τα

with α ∈ (0.3, 0.5).
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Motivation for Rough Volatility I: Better fitting stochastic
volatility models

Conventional stochastic volatility models generate volatility
surfaces that are inconsistent with the observed volatility
surface.

In stochastic volatility models, the ATM volatility skew is
constant for short dates and inversely proportional to T for
long dates.
Empirically, we find that the term structure of ATM skew is
proportional to 1/Tα for some 0 < α < 1/2 over a very wide
range of expirations.

The conventional solution is to introduce more volatility
factors, as for example in the DMR and Bergomi models.

One could imagine the power-law decay of ATM skew to be
the result of adding (or averaging) many sub-processes, each
of which is characteristic of a trading style with a particular
time horizon.
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Fitting the term structure of ATM skew

According to (3.21) of [The Volatility Surface], the term
structure of ATM skew in a conventional one-factor stochastic
volatility model is roughly proportional to

ψ(κ, τ) :=
1

κ τ

{
1− 1− e−κ τ

κ τ

}
.

In Figure 9, we show that this function cannot fit the
empirically observed term structure of ATM skew but that
adding another such term (as a proxy for adding another
factor) generates an excellent fit.
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Empirical SPX ATM skew term structure with fits

Figure 9: The points in black are SPX ATM skews as of Sep 15, 2011.
The red line is the best fit of Aψ(κ, τ). The blue line is the best fit of
A1 ψ(κ1, τ) + A2 ψ(κ2, τ).
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Bergomi Guyon

Define the forward variance curve ξt(u) = E [vu| Ft ].

According to [Bergomi and Guyon], in the context of a
variance curve model, implied volatility may be expanded as

σBS(k,T ) = σ0(T ) +

√
w

T

1

2w2
C x ξ k + O(η2) (1)

where η is volatility of volatility, w =
∫ T

0 ξ0(s) ds is total
variance to expiration T , and

C x ξ =

∫ T

0
dt

∫ T

t
du

E [dxt dξt(u)]

dt
. (2)

Thus, given a stochastic model, defined in terms of an SDE,
we can easily (at least in principle) compute this smile
approximation.
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Connecting the time series with options prices

Suppose for a moment that the pricing measure Q is the
same as the historical (or physical) measure P.

Then equation (2) also connects the prices of options with
statistics of the historical time series of volatility.
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ATM volatility and the autocorrelation of volatility

We may write ξt(u) ≈ β ξt(t) + ε where ε ⊥ ξt(t) and

β =
cov(ξt(u) ξt(t))

var(ξt(t))
=

cov(vu, vt)

var(vt)

which is just the variance autocorrelation ρv (u − t).
Then

C x ξ ≈ E
[
E [dxt dξt(t)]

dt

] ∫ T

0
dt

∫ T

t
du ρv (u − t).

Thus, the ATM volatility skew

ψ(T ) := ∂kσBS(k ,T )|k=0 ∼
1

T 2

∫ T

0
dt

∫ T

t
du ρv (u − t)

The term structure of ATM skew thus reflects the (historical)
variance autocorrelation function, which may be estimated
from the volatility time series.
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The Bergomi model

The n-factor Bergomi variance curve model reads:

ξt(u) = ξ0(u) exp

{
n∑

i=1

ηi

∫ t

0
e−κi (t−s) dW

(i)
s + drift

}
.

(3)

To achieve a decent fit to the observed volatility surface, and
to control the forward smile, we need at least two factors.

In the two-factor case, there are 8 parameters.

When calibrating, we find that the two-factor Bergomi model
is already over-parameterized. Any combination of parameters
that gives a roughly 1/

√
T ATM skew fits well enough.

Moreover, the calibrated correlations between the Brownian
increments dW

(i)
s tend to be high.
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ATM skew in the Bergomi model

The Bergomi model generates a term structure of volatility
skew ψ(τ) that is something like

ψ(τ) =
∑
i

1

κi τ

{
1− 1− e−κi τ

κi τ

}
.

This functional form is related to the term structure of the
autocorrelation function.
Which is in turn driven by the exponential kernel in the
exponent in (3).

The observed ψ(τ) ∼ τ−α for some α.

It’s tempting to replace the exponential kernels in (3) with a
power-law kernel.
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Tinkering with the Bergomi model

This would give a model of the form

ξt(u) = ξ0(u) exp

{
η

∫ t

0

dWs

(t − s)γ
+ drift

}
which looks similar to

ξt(u) = ξ0(u) exp
{
ηWH

t + drift
}

where WH
t is fractional Brownian motion.
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Conversely

Suppose the true model were something like

ξt(u) = ξ0(u) exp

{
η

∫ t

0

dWs

(t − s)γ
+ drift

}
Then, using a discrete Laplace transform, we could
approximate the kernel as

(t − s)−γ ≈
n∑

i=1

αi e
−κi (t−s)

for some coefficients αi .

Then we would have the Bergomi model back (but with all
Brownians perfectly correlated).
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Power-laws from averaging: A toy example

The following example, adapted from [Comte and Renault],
illustrates how power-law behavior can emerge from the averaging
of short memory processes.

Consider the following OU process (Xt = log σt say) indexed
by κ:

Xt(κ) =

∫ t

0
e−κ (t−s) dWs .

Then Xt ∼ N(0,Σ(κ)2) with Σ(κ)2 =
∫ t

0 e−2κ (t−s) ds.

Consider a multiplicity of such processes with
gamma-distributed κ. Explicitly,

pΓ(κ) =
κα−1 e−κ/θ

θα Γ(α)

for some α > 0 and θ > 0.
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Then, the average X̄ ∼ N(0, Σ̄2) with

Σ̄2 =

∫ ∞
0

pΓ(κ)

∫ t

0
e−2κ (t−s) dκ ds =

∫ t

0

1

[1 + 2 θ (t − s)]α
ds

and

X̄t =

∫ t

0

dWs

[1 + θ (t − s)]α/2
.

Thus, averaging short memory volatility processes (with
exponential kernels) over different timescales can generate a
volatility process with a power-law kernel
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Motivation for Rough Volatility II: Power-law scaling of the
volatility process

The Oxford-Man Institute of Quantitative Finance makes
historical realized variance (RV) estimates freely available at
http://realized.oxford-man.ox.ac.uk. These estimates
are updated daily.

Using daily RV estimates as proxies for instantaneous variance,
we may investigate the time series properties of vt empirically.

http://realized.oxford-man.ox.ac.uk
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SPX realized variance from 2000 to 2014

Figure 10: KRV estimates of SPX realized variance from 2000 to 2014.
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The smoothness of the volatility process

For q ≥ 0, we define the qth sample moment of differences of
log-volatility at a given lag ∆1:

m(q,∆) = 〈|log σt+∆ − log σt |q〉

For example

m(2,∆) = 〈(log σt+∆ − log σt)
2〉

is just the sample variance of differences in log-volatility at the
lag ∆.

1〈·〉 denotes the sample average.
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Scaling of m(q,∆) with lag ∆

Figure 11: logm(q,∆) as a function of log ∆, SPX.
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Monofractal scaling result

From the log-log plot Figure 11, we see that for each q,
m(q,∆) ∝ ∆ζq .

Furthermore, we find the monofractal scaling relationship

ζq = q H

with H ≈ 0.14.

Note however that H does vary over time, in a narrow range.
Note also that our estimate of H is biased high because we
proxied instantaneous variance vt with its average over each

day 1
T

∫ T

0
vt dt, where T is one day.
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Distributions of (log σt+∆ − log σt) for various lags ∆

Figure 12: Histograms of (log σt+∆ − log σt) for various lags ∆; normal
fit in red; ∆ = 1 normal fit scaled by ∆0.14 in blue.
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Estimated H for all indices

Repeating this analysis for all 21 indices in the Oxford-Man dataset
yields:

Index ζ0.5/0.5 ζ1 ζ1.5/1.5 ζ2/2 ζ3/3
SPX2.rv 0.128 0.126 0.125 0.124 0.124
FTSE2.rv 0.132 0.132 0.132 0.131 0.127
N2252.rv 0.131 0.131 0.132 0.132 0.133
GDAXI2.rv 0.141 0.139 0.138 0.136 0.132
RUT2.rv 0.117 0.115 0.113 0.111 0.108
AORD2.rv 0.072 0.073 0.074 0.075 0.077
DJI2.rv 0.117 0.116 0.115 0.114 0.113
IXIC2.rv 0.131 0.133 0.134 0.135 0.137
FCHI2.rv 0.143 0.143 0.142 0.141 0.138
HSI2.rv 0.079 0.079 0.079 0.080 0.082
KS11.rv 0.133 0.133 0.134 0.134 0.132
AEX.rv 0.145 0.147 0.149 0.149 0.149
SSMI.rv 0.149 0.153 0.156 0.158 0.158
IBEX2.rv 0.138 0.138 0.137 0.136 0.133
NSEI.rv 0.119 0.117 0.114 0.111 0.102
MXX.rv 0.077 0.077 0.076 0.075 0.071
BVSP.rv 0.118 0.118 0.119 0.120 0.120
GSPTSE.rv 0.106 0.104 0.103 0.102 0.101
STOXX50E.rv 0.139 0.135 0.130 0.123 0.101
FTSTI.rv 0.111 0.112 0.113 0.113 0.112
FTSEMIB.rv 0.130 0.132 0.133 0.134 0.134

Table 1: Estimates of ζq for all indices in the Oxford-Man dataset.
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Universality?

[Gatheral, Jaisson and Rosenbaum] compute daily realized
variance estimates over one hour windows for SPX and
NASDAQ, finding similar scaling relationships.

We have also checked that Gold and Crude Oil futures give
similar results.
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A natural model of realized volatility

Distributions of differences in the log of realized volatility are
close to Gaussian.

This motivates us to model σt as a lognormal random variable.

Moreover, the scaling property of variance of RV differences
suggests the model:

log σt+∆ − log σt = ν
(
WH

t+∆ −WH
t

)
(4)

where WH is fractional Brownian motion.

In our paper [Gatheral, Jaisson and Rosenbaum], we refer to a
stationary version of (4) as the RFSV (for Rough Fractional
Stochastic Volatility) model.
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Fractional Brownian motion (fBm)

Fractional Brownian motion (fBm) {WH
t ; t ∈ R} is the unique

Gaussian process with mean zero and autocovariance function

E
[
WH

t WH
s

]
=

1

2

{
|t|2H + |s|2H − |t − s|2H

}
where H ∈ (0, 1) is called the Hurst index or parameter.

In particular, when H = 1/2, fBm is just Brownian motion.

If H > 1/2, increments are positively correlated.
If H < 1/2, increments are negatively correlated.



Implied volatility Stochastic volatility Realized volatility The RFSV model Pricing

Representations of fBm

There are infinitely many possible representations of fBm in terms
of Brownian motion. For example, with γ = 1

2 − H,

Mandelbrot-Van Ness

WH
t = CH

{∫ t

−∞

dWs

(t − s)γ
−
∫ 0

−∞

dWs

(−s)γ

}
.

where the choice

CH =

√
2H Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)

ensures that

E
[
WH

t WH
s

]
=

1

2

{
t2H + s2H − |t − s|2H

}
.
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Another representation of fBm

Define

KH(t, s) = CH F
(
γ,−γ, 1− γ, 1− t

s

) 1

(t − s)γ
.

where F (·) is Gauss’s hypergeometric function. Then, fBm can
also be represented as:

Molchan-Golosov

WH
t =

∫ t

0
KH(t, s) dWs .

The Mandelbrot-Van Ness representation uses the entire
history of the Brownian motion {Ws ; s ≤ t}.
The Molchan-Golosov representation uses only the history of
the Brownian motion from time 0.
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Why “fractional”?

Denote the differentiation operator d
dt by D. Then

D−1f (t) =

∫ t

0
f (s) ds.

The Cauchy formula for repeated integration gives for any integer
n > 0,

D−nf (t) =

∫ t

0

1

n!
(t − s)n−1 f (s) ds.

The generalization of this formula to real ν gives the definition of
the fractional integral:

D−ν f (t) =
1

Γ(ν)

∫ t

0
(t − s)ν−1 f (s) ds.

Note in particular that D0f (t) = f (t).
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Comte and Renault: FSV model

[Comte and Renault] were perhaps the first to model volatility
using fractional Brownian motion.

In their fractional stochastic volatility (FSV) model,

dSt
St

= σt dZt

d log σt = −α (log σt − θ) dt + γ dŴH
t (5)

with

ŴH
t =

∫ t

0

(t − s)H−1/2

Γ(H + 1/2)
dWs , 1/2 ≤ H < 1

and E [dWt dZt ] = ρ dt.

The FSV model is a generalization of the Hull-White
stochastic volatility model.
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Integral formulation

Solving (5) formally gives

σt = exp

{
θ + e−α t (log σ0 − θ) + γ

∫ t

0
e−α (t−s) dŴH

s

}
. (6)

H > 1/2 to ensure long-memory.

Stationarity is achieved with the exponential kernel e−α (t−s)

at the cost of introducing an explicit timescale α−1.
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RFSV and FSV

The model (4):

log σt+∆ − log σt = ν
(
WH

t+∆ −WH
t

)
(7)

is not stationary.

Stationarity is desirable both for mathematical tractability and
also to ensure reasonableness of the model at very large times.

The RFSV model (the stationary version of (4)) is formally
identical to the FSV model. Except that

H < 1/2 in RFSV vs H > 1/2 in FSV.
αT � 1 in RFSV vs αT ∼ 1 in FSV

where T is a typical timescale of interest.
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FSV and long memory

Why did [Comte and Renault] choose H > 1/2?

Because it has been a widely-accepted stylized fact that the
volatility time series exhibits long memory.

In this technical sense, long memory means that the
autocorrelation function of volatility decays as a power-law.

One of the influential papers that established this was
[Andersen et al.] which estimated the degree d of fractional
integration from daily realized variance data for the 30 DJIA
stocks.

Using the GPH estimator, they found d around 0.35 which
implies that the ACF ρ(τ) ∼ τ 2 d−1 = τ−0.3 as τ →∞.

But every statistical estimator assumes the validity of some
underlying model!
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Correlogram and test of scaling

Figure 13: The LH plot is a conventional correlogram of RV; the RH
plot is of φ(∆) := 〈log

(
cov(σt+∆, σt) + 〈σt〉2

)
〉 vs ∆2 H with H = 0.14.

The RH plot again supports the scaling relationship m(2,∆) ∝ ∆2 H .



Implied volatility Stochastic volatility Realized volatility The RFSV model Pricing

Heuristic derivation of autocorrelation function

We assume that σt = σ̄t e
ηWH

t . Then

cov [σt , σt+∆]

= σ̄t σ̄t+∆

[
exp

{
η2

2

(
t2H + (t + ∆)2H −∆2H

)}
− 1

]
∼ σ̄t σ̄t+∆ exp

{
η2

2

(
t2H + (t + ∆)2H −∆2H

)}
as t →∞.

Similarly,

var [σt ] ∼ σ̄2
t exp

{
η2 t2H

}
.

Thus

ρ(∆) =
cov [σt , σt+∆]√
var [σt ] var [σt+∆]

∼ exp

{
−η

2

2
∆2H

}
.
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Model vs empirical autocorrelation functions

Figure 14: Here we superimpose the predicted functional form of ρ(∆)
(in red) on the empirical curve (in blue).
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Volatility is not long memory

It’s clear from Figures 13 and 14 that volatility is not long
memory.

Moreover, the RFSV model reproduces the observed
autocorrelation function very closely.

[Gatheral, Jaisson and Rosenbaum] further simulate volatility
in the RFSV model and apply estimators such as GPH to the
simulated data.

Real data and simulated data generate very similar plots and
similar estimates of the long memory parameter to those
found in the prior literature.

The RSFV model does not have the long memory property.

Classical estimation procedures seem to identify spurious long
memory of volatility.
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FSV covariance computation

We can compute the FSV autocovariance function explicitly:

Define yt = log σt . We have

cov(yt , yt+∆) ∝
∫ 0

−∞
eα s ds

∫ ∆

−∞
eα (s′−∆) ds ′ |s − s ′|2H−2.

Then E
[
(yt+∆ − yt)

2
]

= 2 var[yt ]− 2 cov(yt , yt+∆) where

cov(yt , yt+∆)

∝ e−k∆

2k2H

∫ k∆

0

eudu

u2−2H
+

e−k∆

2k2H
Γ(2H − 1) +

ek∆

2k2H

∫ +∞

k∆

e−udu

u2−2H
.
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Incompatibility of FSV with realized variance (RV) data

In Figure 15, we demonstrate graphically that long memory
volatility models such as FSV with H > 1/2 are not
compatible with the RV data.

In the FSV model, the autocorrelation function
ρ(∆) ∝ ∆2H−2. Then, for long memory, we must have
1/2 < H < 1.

For ∆� 1/α, stationarity kicks in and m(2,∆) tends to a
constant as ∆→∞.
For ∆� 1/α, the exponential decay in (6) is not significant
and m(2,∆) ∝ ∆2 H .
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Incompatibility of FSV with RV data

Figure 15: Black points are empirical estimates of m(2,∆); the blue line
is the FSV model with α = 0.5 and H = 0.53; the orange line is the
RFSV model with α = 0 and H = 0.14.
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Does simulated RSFV data look real?

Figure 16: Volatility of SPX (above) and of the RFSV model (below).
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Remarks on the comparison

The simulated and actual graphs look very alike.

Persistent periods of high volatility alternate with low volatility
periods.

H ∼ 0.1 generates very rough looking sample paths
(compared with H = 1/2 for Brownian motion).

Hence rough volatility.

On closer inspection, we observe fractal-type behavior.

The graph of volatility over a small time period looks like the
same graph over a much longer time period.

This feature of volatility has been investigated both empirically
and theoretically in, for example, [Bacry and Muzy].

In particular, their Multifractal Random Walk (MRW) can be
understood as the limit of the RSFV model as H → 0.
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Pricing under rough volatility

The foregoing behavior suggest the following model for volatility
under the real (or historical or physical) measure P:

yt := log σt = νWH
t .

Let γ = 1
2 − H. We choose the Mandelbrot-Van Ness

representation of fractional Brownian motion WH as follows:

WH
t = CH

{∫ t

−∞

dWP
s

(t − s)γ
−
∫ 0

−∞

dWP
s

(−s)γ

}
where the choice

CH =

√
2H Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)

ensures that

E
[
WH

t WH
s

]
=

1

2

{
t2H + s2H − |t − s|2H

}
.
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Pricing under rough volatility

Then

yu − yt

= ν CH

{∫ u

t

1

(u − s)γ
dWP

s +

∫ t

−∞

[
1

(u − s)γ
− 1

(t − s)γ

]
dWP

s

}
=: ν CH [Mt(u) + Zt(u)] . (8)

Note that EP [Mt(u)| Ft ] = 0 and Zt(u) is Ft-measurable.

In terms of vt = σ2
t ,

log vu − log vt = 2 ν CH [Mt(u) + Zt(u)] . (9)

To price options, it would seem that we would need to know
Ft , the entire history of the Brownian motion Ws for s < t!



Implied volatility Stochastic volatility Realized volatility The RFSV model Pricing

The forward variance curve

Taking the exponential of (9) gives

vu = vt exp {2 ν CH [Mt(u) + Zt(u)]}

Ignoring the difference between P and Q, and computing the
conditional expectation gives

EP [vu| Ft ] = ξt(u)

= vt exp {2 ν CH Zt(u)} E [ exp {2 ν CH Mt(u)}| Ft ]

where (by definition) ξt(u) is the forward variance curve at time t.

The Zt(u) are encoded in the forward variance curve ξt(u)!
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The rough Bergomi model

Define η = 2 ν CH/
√

2H. Rewriting gives

vu = ξt(u) E
(
η
√

2H

∫ u

t

dWs

(u − s)γ

)
(10)

where E(·) denotes the stochastic exponential.

We could call this a rough Bergomi or rBergomi model.
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Features of the rough Bergomi model

The forward variance curve

ξu(t) = E [vu| Ft ] = vt exp

{
η
√

2H Zt(u) +
1

2
η2 (u − t)2H

}
.

depends on the historical path {Ws , s < t} of the Brownian
motion since inception (s = −∞ say).

The rough Bergomi model is non-Markovian:

E [vu| Ft ] 6= E[vu|vt ].

However, given the (infinite) state vector ξt(u), which can in
principle be computed from option prices, the dynamics of the
model are well-determined.
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Re-interpretation of the conventional Bergomi model

A conventional n-factor Bergomi model is not self-consistent
for an arbitrary choice of the initial forward variance curve
ξt(u).

ξt(u) = E [vu| Ft ] should be consistent with the assumed
dynamics.

Viewed from the perspective of the fractional Bergomi model
however:

The initial curve ξt(u) reflects the history {Ws ; s < t} of the
driving Brownian motion up to time t.
The exponential kernels in the exponent of (3) approximate
more realistic power-law kernels.

The conventional two-factor Bergomi model is then justified
in practice as a tractable Markovian engineering
approximation to a more realistic fractional Bergomi model.
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An fBm-like Volterra process

Define

W̃H
t =

√
2H

∫ t

0

1

(u − s)γ
dWP

s .

Note that var[W̃H
t ] = t2H just like fBm.

However, the covariance E
[
W̃H

t W̃H
s

]
is very different.

The rBergomi model (10) may be rewritten in terms of this
Volterra process (as of time 0) as:

vt = ξ0(t) E
(
η W̃H

t

)
.
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The stock price process

The observed anticorrelation between price moves and
volatility moves may be modeled naturally by anticorrelating
the Brownian motion W that drives the volatility process with
the Brownian motion driving the price process.

Then
dSt
St

=
√
vt dZt

with
dZt = ρ dWt +

√
1− ρ2 dW⊥

t

where ρ is the correlation between volatility moves and price
moves.
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Simulation of the Bergomi and rSABR models

First, for each Monte Carlo path, generate the correlated
Brownian increments ∆Wt and ∆Zt .

The W̃H
t may then be constructed by appropriately

discretizing the definition

W̃H
t =

√
2H

∫ t

0

dWs

(t − s)γ
.
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Estimating H and η

We could in principle estimate H either from the term
structure of ATM SPX skew, or from the term structure of
ATM VIX volatilities.

Implied volatility of VIX should be “volatility of SPX
volatility”!

Fast calibration of the Bergomi model is work in progress.
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SPX smiles in the rBergomi model

In Figure 17, we show how a rBergomi model simulation is
consistent with the SPX option market as of 04-Feb-2010, a
day when the ATM volatility term structure happened to be
pretty flat.

rSABR parameters were: σ̄ = 0.235, η = 1.7, H = 0.1,
ρ = −0.85.

Note in particular that we have obtained a good fit to the
whole volatility surface using a model with very few
parameters!

In Figure 18, we see that the empirical SPX skews are very
consistent with the rBergomi model, in particular with
H = 0.1.

Whatever else is allowed to change, H must be the same under
P and Q if the model is well-specified.
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rBergomi fits to SPX smiles as of 04-Feb-2010

Figure 17: Red and blue points represent bid and offer SPX implied
volatilities; orange smiles are from the rBergomi simulation.
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Term structure of ATM skew in the rBergomi model

Figure 18: Blue points are empirical skews; the red points are from the
rBergomi simulation.
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Summary

We uncovered a remarkable monofractal scaling relationship in
historical volatility.

A corollary is that volatility is not a long memory process, as
widely believed.

This leads to a natural non-Markovian stochastic volatility
model.

This model fits the observed volatility surface surprisingly well
with very few parameters.

For perhaps the first time, we have a simple consistent model
of historical and implied volatility.
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