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1. Introduction

Many countries have experienced housing market bubbles. The collapse of housing bubbles is often

accompanied by a financial crisis. As evidence, Figure 1 presents the real housing price indexes, the

price-income ratios, and the price-rental ratios for the United States, Japan, Spain, and Greece.

This figure reveals that the three series comove for each country, indicating that fluctuations in

housing prices may not be driven entirely by fundamentals (i.e., incomes or rents). In particular,

the US housing prices increased by 34% between 2001Q1 and 2006Q4. By 2011Q1 the price index

had dropped by about 21% from its peak in 2006Q4. It is widely believed that the credit crisis

resulting from the bursting of the housing bubble is the primary cause of the 2007–2009 recession

in the United States. Japanese housing prices rose by 36% from 1986Q1 to 1991Q1. From the peak

in 1991Q1 to 2011Q1, the housing prices declined continually by 45%. The collapse of the Japanese

housing bubble contributed to the so-called “Lost Decade.” Spanish housing prices rose by 116%

from 1995Q1 to 2006Q4. When the bubble bursted in 2008, the Spanish economy was severely

affected. Greek housing prices increased by 93% from 1997Q1 to 2006Q4. The prices started to

decline after the peak in 2006Q4 and dropped by 20% by 2011Q2. Similar patterns appeared in

other European countries such as Ireland. The collapse of housing bubbles may be partly to blame

for the European sovereign debt crisis.

What causes a housing bubble? What is its welfare effect? If a housing bubble reduces welfare,

what policies can prevent a bubble from forming? The goal of this paper is to present a theoretical

study to address these questions. We provide a model of credit-driven housing bubbles in an

infinite-horizon production economy. The model economy is populated by a continuum of identical

households. Each household is an extended family consisting of a continuum of entrepreneurs and

a continuum of workers. Each entrepreneur runs a firm and workers work for the firms. There is

no aggregate uncertainty about fundamentals.

There are three key assumptions in our model. First, entrepreneurs face borrowing constraints

because of financial market imperfections. In particular, they have limited commitment and con-

tract enforcement is imperfect. They must pledge their houses as collateral and borrow against at

most a fraction of the housing value. That is, they must make down payments in order to pur-

chase houses. This kind of borrowing constraint is often called a leverage constraint or a margin

constraint. It is related to the idea put forth by Kiyotaki and Moore (1997), Aiyagari and Gertler

(1999), Brunnermeier and Pederson (2009), and Brumm et al. (2013), among others.

Second, entrepreneurs face idiosyncratic policy distortions. For example, governments may offer

different tax credits or subsidies to different firms financed by lump sum taxes on households. As

Restuccia and Rogerson (2008) and Klenow and Hsieh (2009) argue, policy distortions can generate

resource misallocations and are widespread in many developed and developing countries. In this
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paper, we consider the idiosyncratic investment tax credit (ITC), which is an important policy tool

to stimulate investment.1

Third, house trading is illiquid. Following Kiyotaki and Moore (2008), we assume that en-

trepreneurs face a resaleability constraint, which means that they can resell at most a fraction of

their existing houses. In addition, they cannot short sell houses.

Housing plays two important roles in the model. First, it is an asset that allows resources to

be transferred intertemporally and generate capital gains or losses. Second, it is used as collateral

to facilitate borrowing. In general, housing can also provide direct utility as consumer durable and

hence can generate rents. In this paper, we abstract away from this role of housing and focus on

its first two roles instead. In particular, we assume that housing is intrinsically useless so that its

fundamental value is zero. We will show that housing can have a positive value in equilibrium,

which represents a bubble.

In standard models with infinitely-lived agents, bubbles can typically be ruled out by transver-

sality conditions. Why can a housing bubble exist in our model? The reason is that in our model

entrepreneurs face borrowing constraints and housing can provide liquidity. Hence housing com-

mands a liquidity premium. Consider the special case where entrepreneurs cannot borrow. Since

they face idiosyncratic ITC, those with high ITC are willing to invest more. Resources should be

reallocated from entrepreneurs with low ITC to those with high ITC. In the absence of a credit

market, housing as an asset plays the role of transferring resources among entrepreneurs and also

over time. As a result, housing is valuable just like money. In the presence of a credit market,

housing also serves as collateral for borrowing and a high housing value can relax the credit con-

straint. Hence housing demands a collateral yield. The two benefits provided by housing constitute

the liquidity premium.

Since liquidity depends at least partly on beliefs, so does the existence of a housing bubble. If

no one believes that housing is valuable, then no one will trade it or use it as collateral. In this

case, housing is indeed valueless in equilibrium. Thus our model features two types of equilibria:

the bubbly equilibrium and the bubbleless equilibrium.2 Which type is more efficient? Having

discussed the good side of a housing bubble in terms of providing liquidity and relaxing credit

constraints, we now turn to its bad side. Our model features idiosyncratic tax distortions. The

existence of a housing bubble allows entrepreneurs with high ITC to make more investment. This

creates inefficient overinvestment because the ITC must be financed by taxes on households, which

1As Hassett and Hubbard (2002) point out, since 1962, the mean duration of a typical state in the United States
in which an ITC is in effect has been about three and a half years, and the mean duration of the no-ITC state has
been about the same length. In October 2003, China’s government provided investment tax credits to six industries
of the manufacturing sector in Northeastern provinces and later the tax reform was expanded to more industries in
more provinces (Chen, He, and Zhang (2013)).

2There may exist a third type of equilibrium with stochastic bubbles (see, e.g., Weil (1987) and Miao and Wang
(2013a)). We will not study this type in the paper.
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reduces welfare. The overall welfare effect of a housing bubble is ambiguous. We prove that a

housing bubble can reduce welfare in some special cases and provide numerical examples for more

general cases.

Given that housing bubbles can reduce welfare, what policies can prevent the formation of a

bubble? In the standard models of rational bubbles (e.g., Tirole (1985)), the return on the bubble

is equal to the capital gains only since the bubble does not deliver any payoffs. In a deterministic

model, this implies that the interest rate is equal to the growth rate of the bubble. By contrast,

in our model the return on the bubble is equal to capital gains plus the liquidity premium. This

asset pricing equation has important policy implications. In particular, we focus on fiscal and

macroprudential policies that can reduce the liquidity premium and hence the benefit of having

a housing bubble. If the benefit is sufficiently small, a housing bubble cannot exist. We study

four types of policies: (i) limit the loan-to-value (LTV) ratio to a sufficiently low level or raise

the downpayment to a sufficiently high level; (ii) raise property taxes to a sufficiently high level

and transfer the tax revenue to households; (iii) raise property transaction taxes (or Tobin’s taxes)

to a sufficiently high level and transfer the tax revenue to households; and (iv) the government

purchases private bonds financed by lump sum taxes.

We show that the interest rate in the bubbleless steady state is lower than that in the bubbly

steady state. The reason is that the housing bubble crowds out the bond demand, thereby reducing

the bond price and raising the interest rate. This implies that all four policies will reduce the interest

rate in the long run after the bubble is eliminated. This seems to contradict the conventional wisdom

that a low interest rate may cause a housing bubble because a low interest rate encourages excessive

mortgage borrowing.3 But this can be reconciled by noting that the conventional wisdom ignores

the general equilibrium effect of the housing bubble.

Our paper is related to a growing literature on rational bubbles.4 Most models of rational

bubbles adopt the overlapping generations framework (Tirole (1985) and Weil (1987)). Introduc-

ing rational bubbles into an infinite-horizon model is generally nontrivial due to the transversality

conditions (Santos and Woodford (1997)). As Kocherlakota (1992) points out, infinite-horizon

models with trading frictions or borrowing constraints can generate bubbles. Kocherlakota (2008)

and Hellwig and Lorenzoni (2009) provide infinite-horizon endowment economies with such fea-

tures. Recently, there has been a growing interest in introducing rational bubbles into production

economies with borrowing constraints. Examples include Caballero and Krishnamurthy (2006),

Farhi and Tirole (2012), and Martin and Venture (2012) in the overlapping generations framework

and Kocherlakota (2009), Wang and Wen (2012), Miao and Wang (2012, 2013a,b,c), Miao, Wang,

3Glaeser, Gottlieb, and Gyourko (2010) document evidence that low interest rates cannot explain the housing
bubble between 2001 and the end of 2005 in the US.

4See Brunnermierer and Oehmke (2013) for a survey of the literature on rational and irrational bubbles.
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and Xu (2013), Miao, Wang, and Xu (2013), and Hirano and Yanagawa (2013) in the infinite-horizon

growth framework. In particular, Miao and Wang (2013a) study how a variety of endogenous credit

constraints with limited commitment can generate bubbles.5 They show that bubbles can relax

credit constraints and generate dividend/collateral yields. These yields also represent the liquidity

premium.

Fiat money is a pure bubble. Kiyotaki and Moore (2008) provide a model in which money

is valued due to its liquidity. Our idea is similar to theirs. But housing is different from money

because housing is illiquid and serves as collateral and also because housing is privately provided.

Our paper is more closely related to the literature on housing bubbles.6 Kocherlakota (2009)

provides a model of housing bubbles based on Kiyotaki and Moore (2008).7 In his model, firms

face idiosyncratic productivity shocks and collateral constraints. Land is intrinsically useless, but

serves as collateral as in Kiyotaki and Moore (1997). He, Wright, and Zhu (2013) build a model

of housing bubbles in a monetary economics framework based on Lagos and Wright (2005). Their

model does not incorporate real investment and the credit constraint applies to households instead

of firms. As in our paper, the existence of a housing bubble is due to the liquidity premium. Unlike

our model with two steady states, their model delivers a unique steady state. Housing in their

model can also provide direct utility. Arce and Lopez-Salido (2011) study housing bubbles in an

overlapping generations framework with credit constraints. The interest rate is equal to the growth

of the bubble in their model. In contrast to our result, they show that the interest rate in the

bubbly steady state is lower than that in the bubbleless steady state. They also incorporate utility

from housing and show that the housing price in the bubbly equilibrium is less than the discounted

value of the utility flow (or dividends).

Bubbles must provide some benefits to economic agents, or else, they could not exist in the

first place. However, policymakers and researchers are more concerned about the welfare costs of

bubbles. Potential costs include volatility and fire sales after the collapse of bubbles (Caballero

and Krishnamurthy (2006) and Miao and Wang (2013c)) and misallocation of resources in the

presence of market distortions such as externality (Grossman and Yanagawa (1993) and Miao and

Wang (2013b)). In this paper, we focus on the cost generated by resource misallocation in the

presence of idiosyncratic tax policy distortions. Most papers in the literature discuss the role of

monetary policy in preventing bubbles. In an overlapping generations model, Gaĺı (2013) studies

how monetary policy can affect the fluctuations of bubbles. But monetary policy cannot eliminate

5See Kehoe and Levine (1993), Alvarez and Jermann (2000), and Albuquerque and Hopenhayn (2004) for related
modeling of endogenous credit constraints.

6Brunnermeier and Julliard (2008) and Burnside, Eichenbaum, and Rebelo (2013) present models of housing
bubbles based on heterogeneous beliefs or irrational behaviors. There are also many studies of housing prices in the
standard macroeconomic models without bubbles, e.g., Icoviallo (2005), Kiyotaki, Michaelides, and Nikolov (2011),
Landvoigt, Schneider, and Piazzesi (2013), Liu, Wang, and Zha (2013), Liu, Miao, and Zha (2013), among others.

7Following Kocherlakota (2009), we may refer to housing as land and use these two terms interchangably.
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bubbles. He shows that a systematic increase in interest rates in response to a growing bubble

enhances the fluctuations in the latter because the expected growth rate of the bubble is equal to

the interest rate in his model. Thus the leaning against the wind monetary policy lacks a theoretical

foundation. We agree with his view since the interest rate in the bubbleless equilibrium is lower

in our model. However, because the asset pricing equation for the bubble includes the liquidity

premium in our model, we argue that other policy tools can be used to lower this premium and

eliminate the housing bubble.

Property tax policy and LTV policy are often discussed by the policymakers and the general

public. For example, the Chinese government has implemented these policies to curb the growth of

housing prices and to prevent housing bubbles.8 Our analysis provides a theoretical foundation for

these policies. The asset purchase policy proposed in our paper is related to those in Kocherlakota

(2009), Hirano, Inaba, and Yanagawa (2013), and Miao and Wang (2013a). Kocherlakota (2009)

discusses credit policy to restore the bubbly equilibrium. Miao and Wang (2013a) provide a credit

policy to achieve the first-best allocation. Hirano, Inaba, and Yanagawa (2013) study bailout policy

and welfare implications for workers who are taxpayers.

The key difference between our paper and some of the aforementioned papers is that our model

adopts the infinite-horizon growth framework, which is amenable to quantitative studies (see, e.g.,

Miao, Wang, and Xu (2013) and Miao, Wang, and Zha (2014)). In addition, the borrowing con-

straint in our model differs from those often used in the literature on housing prices. Many papers

adopt the Kiyotaki and Moore (1997) collateral constraint, which ensures that the debt repayment

does not exceed the collateral value so that the borrower will never default. The borrowing con-

straint in this paper is a type of margin constraint, consistent with the institutional feature in the

mortgage market. Similar constraints are imposed in the study of stock trading (see Brumm et al.

(2013) and the references therein). We show that given the margin constraint, the Kiyotaki-Moore

collateral constraint is always satisfied so that default never occurs in our model. The margin

constraint is also adopted in Arce and Lopez-Salido (2011) and some references therein.

The rest of the paper proceeds as follows. Section 2 presents a baseline model. Section 3 provides

the model solution. Section 4 analyzes the welfare implications of housing bubbles. Section 5 studies

four different policies to prevent bubbles. Section 6 concludes. Data description and technical proofs

are relegated to the appendices.

8For example, a new nationwide real estate sales tax was introduced in late 2009. Families purchasing a second
home were required to make at least a 40% downpayment in 2010, and legislation for a property tax was passed in
November 2013.
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2. The Baseline Model

To preserve the tractability of the representative agent framework and also allow for firm hetero-

geneity, we consider an economy populated by a continuum of identical households of unit mass.

Each household is an extended family consisting of a continuum of ex ante identical entrepreneurs

of unit mass and a continuum of identical workers also of unit mass. Each entrepreneur runs a

firm. There is a government that subsidizes entrepreneurial investment financed by lump-sum taxes

on households. Following Restuccia and Rogerson (2008), we assume that this policy distortion is

idiosyncratic and take it as a given institutional feature throughout the analysis. For simplicity,

we do not consider government spending.

Time is discrete and denoted by t = 0, 1, ... There is no aggregate uncertainty about fundamen-

tals. Assume that a law of large numbers holds so that aggregate variables are deterministic.

2.1 Entrepreneurs

An entrepreneur is indexed by j ∈ [0, 1] . Each entrepreneur j runs a firm using a constant-returns-

to-scale technology to produce output according to

Yjt = Kα
jtN

1−α
jt , α ∈ (0, 1)

where Kjt and Njt represent capital and labor inputs, respectively. Entrepreneurs can borrow and

lend among themselves by trading one-period riskless bonds. They can also trade houses. Normalize

housing supply to one. In Appendix C, we introduce endogenous housing supply and show that

this will not change our insights and results. For simplicity, assume that housing is intrinsically

useless in that it does not deliver any payoff or direct utility.9 One may follow Kocherlakota (2009)

and refer to housing as land, thereby using these two terms interchangeably.10 Houses can be used

by entrepreneurs as collateral for borrowing. Assume that each entrepreneur is initially endowed

with zero bond and one unit of house, i.e., Bj0 = 0 and Hj0 = 1 for all j. Assume that houses do

not depreciate.

Solving the static labor choice problem,

RktKjt ≡ max
Njt

Kα
jtN

1−α
jt −WtNjt,

9See Tirole (1985), Kocherlakota (2009), Miao and Wang (2013a) for the discussions of how to introduce rents
into the asset with bubbles. One way is to introduce economic growth and assume that rents grow at a rate lower
than economic growth. See Miao, Wang and Zha (2014) for another way.

10Davis and Heathcote (2007) document that fluctuations of housing prices are largely driven by those of land
prices. We reinterpret the bubble in housing prices as reflecting the one in land prices.
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gives

Njt =

(
1− α

Wt

) 1
α

Kjt, (1)

and

Rkt = α

(
1− α

Wt

) 1−α
α

,

where Wt denotes the wage rate. We will show later that Rkt is equal to the rental rate of capital.

Entrepreneur j’s dividends are given by

Djt = RktKjt − τ jtIjt − Pt(Hjt+1 −Hjt) +
Bjt+1

Rft
−Bjt, (2)

where Ijt, Pt, Hjt, and Rft denote the investment level, the house price, house holdings, and the

(gross) interest rate, respectively. In addition, Bjt represents the debt level if it is positive; and

savings, otherwise. Note that τ jt > 0 represents policy distortions and is an important variable in

the model. We interpret 1 − τ jt as a subsidy to investment, e.g., ITC, if it is positive, and as a

tax on investment if it is negative. For simplicity, suppose that τ jt is independently and identically

distributed across firms and over time, and is drawn from a fixed distribution with the density

function f on [τmin, τmax] .

Entrepreneur j’s capital accumulation equation is given by

Kj,t+1 = (1− δ)Kjt + Ijt, Kj0 given, (3)

where δ ∈ (0, 1) denotes the depreciation rate.

Entrepreneurs face several constraints due to real and financial frictions. First, there is empirical

evidence that equity financing is more costly than debt financing. For simplicity, we assume that

equity financing is so costly that entrepreneurs cannot raise new equity. We thus impose the

constraint,11

Djt ≥ 0. (4)

Second, due to imperfect contract enforcement, there is a down payment restriction or margin

requirement on housing purchases:
Bjt+1

Rft
≤ θPtHjt+1, (5)

where θ ∈ (0, 1) represents the LTV ratio and 1 − θ represents the down payment or margin

requirement. Land is used as collateral. To ensure that entrepreneur j will not default in the next

11We can allow limited equity financing in the sense that Djt ≥ −ζKjt for some ζ > 0. This modeling will not
change our key results.
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period, we require that

Bjt+1 ≤ Pt+1Hjt+1. (6)

This constraint ensures that debt repayments do not exceed the collateral value in the next period.

Kiyotaki and Moore (1997) introduce this constraint, but ignore the margin constraint (5).

Third, house trading is illiquid. Following Kiyotaki and Moore (2008), we impose the following

resaleability constraint

Hjt+1 ≥ ωHjt, (7)

where ω > 0 represents the liquidity of house trading. This constraint means that entrepreneurs

can sell at most a fraction 1− ω of their existing houses. We also rule out short sales of houses so

that Hjt ≥ 0.

The last constraint is that investment is irreversible at the firm level, i.e.,

Ijt ≥ 0. (8)

As will become clear later, this assumption is useful for deriving optimal investment given constant-

returns-to-scale technology.

Now we describe entrepreneur j’s decision problem by dynamic programming. We use Vt(τ jt,Kjt,Hjt, Bjt)

to denote entrepreneur j’s value function, where we suppress aggregate state variables as arguments

in the value function. The dynamic programming problem is given by

Vt(τ jt,Kjt,Hjt, Bjt) = max
Njt,Ijt,Bjt+1,Hjt+1

Djt + βEt
Λt+1

Λt
Vt+1(τ jt+1,Kjt+1,Hjt+1, Bjt+1), (9)

subject to (2), (3), (4), (5), (6), (7), and (8). Here Et represents the conditional expectation

operator with respect to the idiosyncratic shock and Λt is the representative household’s marginal

utility.

2.2 Households

Assume that labor supply is inelastic and normalized to one. Entrepreneurs and workers hand over

their dividends and wages to their family. The family pool their income and distribute it equally

among family members. A representative household chooses family consumption Ct to maximize

its life-time expected utility,

max
{Ct}

∞∑
t=0

βt ln(Ct),

subject to

Ct = WtNt +Dt − Γt,
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where Nt = 1, Dt denotes the total dividends from all firms, and Γt denotes lump-sum taxes

satisfying

Γt =

∫
(1− τ jt)Ijtdj.

Given the above utility function, we can derive the marginal utility Λt = 1/Ct. For simplicity,

we have assumed that households do not borrow or save as in Kocherlakota (2009) and Kiyotaki

and Moore (2008). We can relax this assumption and suppose that households can save, but cannot

borrow against their future incomes. Then households will optimally choose not to save because, as

we will show later, the equilibrium interest rate is too low, i.e., Rft < Λt/ (βΛt+1).
12 Consequently,

none of results will change.

2.3 Competitive equilibrium

A competitive equilibrium consists of sequences of individual quantities {Ijt, Njt,Kjt+1, Yjt,Hjt+1}
and aggregate quantities {Ct, It, Nt, Yt} and prices {Wt, Rkt, Rft, Pt} such that (i) households op-

timize; (ii) workers and entrepreneurs optimize; and (iii) the markets for labor, houses, bonds, and

consumption goods all clear, i.e.,

Ct + It = Yt,

Nt =

∫ 1

0
Njtdj = 1,

∫ 1

0
Hjtdj = 1,

∫ 1

0
Bjtdj = 0,

where It =
∫
Ijtdj and Yt =

∫
Yjtdj.

3. Model Solution

We first solve entrepreneurs’ decision problem and then characterize the equilibrium system. Fi-

nally, we analyze the steady state and local dynamics of the system.

3.1 Entrepreneurs’ Decision Problem

We conjecture entrepreneur j’s value function takes the form:

Vt(τ jt,Kjt,Hjt, Bjt) = vt(τ jt)Kjt + pt(τ jt)Hjt − ϕt(τ jt)Bjt,

where vt(τ jt), pt(τ jt), and ϕt(τ jt) are to be determined and satisfy the following restrictions:

Pt = β
Λt+1

Λt

∫
pt+1(τ )f (τ) dτ , (10)

12The model in Kiyotaki and Moore (2008) has a similar feature.
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1

Rft
= β

Λt+1

Λt

∫
ϕt+1(τ)f (τ ) dτ. (11)

Define Qt ≡ βΛt+1

Λt

∫
vt+1(τ)f (τ) dτ as Tobin’s marginal Q or the marginal value of one additional

unit of installed capital. We substitute the conjecture above into the Bellman equation and write

it as

vt(τ jt)Kjt + pt(τ jt)Hjt − ϕt(τ jt)Bjt (12)

= max
Hjt+1,Ijt,Bjt+1

RktKjt + PtHjt −Bjt − τ jtIjt +QtIjt +Qt(1− δ)Kjt,

subject to (5), (7), and

0 ≤ τ jtIjt ≤ RktKjt +
Bjt+1

Rft
−Bjt − Pt(Hjt+1 −Hjt), (13)

where we have substituted (2) into the objective function and combined (2), (4), and (8) to obtain

(13). In addition, Hjt+1 and Bjt+1 are canceled out in (12) given (10) and (11). Note that we

have temporarily ignored constraint (6). In Section 3.2 we will verify that this constraint is always

satisfied in any bubbly equilibrium.

Solving the above problem yields the following:

Proposition 1 (i) For τ jt ≤ Qt,

Ijt =
1

τ jt
[RktKjt + (1− ω + θω)PtHjt −Bjt] ,

Bjt+1

Rft
= θPtHjt+1, Hjt+1 = ωHjt.

For τ jt > Qt, Ijt = 0, and entrepreneur j is indifferent among any choices of Hjt+1 and Bjt+1

satisfying (5), (7) and

0 ≤ RktKjt +
Bjt+1

Rft
−Bjt − Pt(Hjt+1 −Hjt).

(ii) The house price, Tobin’s Q, and the interest rate satisfy

Pt = β
Λt+1

Λt
Pt+1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩1 + (1− ω + ωθ)

∫
τ≤Qt+1

Qt+1 − τ

τ
f(τ)dτ︸ ︷︷ ︸

liquidity premium

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , (14)
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Qt = β
Λt+1

Λt

⎡
⎢⎢⎢⎣(1− δ)Qt+1 +Rkt+1 +Rkt+1

∫
τ≤Qt+1

Qt+1 − τ

τ
f(τ)dτ︸ ︷︷ ︸

liquidity premium

⎤
⎥⎥⎥⎦ , (15)

1

Rft
= β

Λt+1

Λt

⎡
⎢⎢⎢⎣1 +

∫
τ≤Qt+1

Qt+1 − τ

τ
f(τ)dτ︸ ︷︷ ︸

liquidity premium

⎤
⎥⎥⎥⎦ , (16)

and the transversality conditions hold

lim
i→+∞

βiΛt+i

Λt
Qt+iKjt+i+1 = 0, (17)

lim
i→+∞

βiΛt+i

Λt

1

Rft+i
Bjt+i+1 = 0, (18)

lim
i→+∞

βiΛt+i

Λt
Pt+iHjt+i+1 = 0. (19)

We first discuss the intuition behind the optimal investment policy given in part (i) of the

proposition. Due to idiosyncratic policy distortions, one dollar of investment costs τ jt dollars. Its

benefit is given by Tobin’s marginal Q. Thus, when τ jt ≤ Qt, investing is profitable and optimal

investment reaches the upper limit. In addition, entrepreneur j borrows as much as possible to

finance investment so that the credit constraint (5) binds. Because θ ∈ (0, 1) , he also wants to sell

houses as much as possible to finance investment so that (7) binds. When τ jt > Qt, investing is not

profitable so that Ijt = 0. Because Bjt+1 and Hjt+1 are canceled out in (12), they need to satisfy

the feasibility constraints (5), (7) and (13) only. The entrepreneur is indifferent among any choices

of Bjt+1 and Hjt+1 in the set of the feasibility constraints.

Next we consider part (ii) of the proposition, which gives the asset pricing equations for the

house price, Tobin’s Q and the interest rate. The left-hand side of equation (14) represents the

cost of buying one unit of house. The right-hand side of this equation represents the benefit of

holding this unit of house. It consists of two components. The first component is the usual resale

value. The second component is a special feature of our model. It represents the role of liquidity

and collateral played by the house as an asset. Specifically, to finance investment, the entrepreneur

can sell (1− ω) units of house and borrow against the value of ωθ units of house. The entrepreneur

makes investment if and only if τ ≤ Qt+1. The expected return from one dollar of the investment is

given by
∫
τ≤Qt+1

Qt+1−τ
τ f(τ)dτ . Thus the total expected return from the investment is given by the

second component on the right-hand side of (14). We call this component the “liquidity premium”

in the house price.

Note that it is straightforward to show that the Lagrange multiplier associated with the dividend

12



constraint (4) is equal to (Qt − τ jt) /τ jt if Qt > τ jt; and 0, otherwise. This Lagrange multiplier

is also equal to that associated with the borrowing constraint (5). Thus the liquidity premium

essentially reflects the shadow value of relaxing external financing constraints by an additional

dollar. The house has liquidity value because it can relax these constraints.13

Alternatively we may interpret (14) when Pt > 0 as a standard Euler equation,

1 = β
Λt+1

Λt
RH

t+1,

where RH
t+1 denotes the return on the house. This return consists of two components: capital gains

Pt+1/Pt and the liquidity premium in returns defined as the liquidity premium in the house price

multiplied by Pt+1/Pt. Note that houses are intrinsically useless and do not deliver any rent. The

liquidity premium is generated from the belief about the future value of the house Pt+1 > 0.

In traditional literature on bubbles (e.g., Tirole (1985)), there is no liquidity premium so that

the return on the house is equal to the capital gains or the growth rate of the house price (or the

housing bubble). The transversality condition (19) for infinitely-lived agents then rules out the

existence of a bubble.14 Because of the liquidity premium, the transversality condition cannot rule

out bubbles in our model.

Equation (15) is the asset price equation for Tobin’s Q. The dividend generated from capital

consists of rents Rkt+1 and a liquidity premium for capital. Due to the credit constraint, a unit of

capital generates Rkt+1 units of internal funds (or liquidity) which can be used to finance investment.

The investment generates expected return given by the last component in (15).

Equation (16) shows that the bond price also carries a liquidity premium due to credit con-

straints. The liquidity premium causes the equilibrium interest rate to be lower than the implicit

interest rate Λt/ (βΛt+1) in an economy without any frictions. This result proves our previous claim

in Section 2.2.

Note that liquidity premium has three different expressions in (14), (15), and (16). They reflect

different degrees of liquidity provided by houses, capital, and bonds. Two special cases merit

discussions. First, when ω = 0, house trading is liquid. Land as an asset is a perfect substitute for

bonds and they earn the same liquidity premium. Second, when θ = 1, entrepreneurs can borrow

against the full value of the non-resaleable house. Even though house trading may be illiquid, the

non-resaleable house is effectively traded through bond trading. Thus house trading is effectively

liquid. In this case, houses and bonds are also perfect substitutes and earn the same liquidity

premium.

13See He, Wright, and Zhu (2013) for a similar discussion.
14The transversality conditions are necessary for infinite-horizon optimization problems with discounting and finite

value functions (see, e.g., Ekeland and Scheinkman (1986)).
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3.2 Equilibrium System

We now aggregate individual decision rules and impose market-clearing conditions. Define aggre-

gate capital as Kt ≡
∫
Kjtdj. We can characterize the equilibrium system as follows:

Proposition 2 The equilibrium system is given by the following nine equations: (14), (15), (16),

and

It = [RktKt + (1− ω + θω)Pt]

∫
τ≤Qt

1

τ
f(τ)dτ , (20)

Ct + It = Yt, (21)

Kt+1 = (1− δ)Kt + It, (22)

Yt = Kα
t , (23)

Wt = (1− α)Kα
t , Rkt = αKα−1

t , (24)

for nine variables {Ct, It, Yt, Kt+1, Wt, Rkt, Rft, Qt, Pt}. The usual transversality conditions hold.

Equation (20) shows that only firms with tax distortions τ ≤ Qt contribute to aggregate in-

vestment. Other firms do not invest. Aggregate investment is financed by internal funds RktKt,

house sales (1− ω)Pt, and external borrowing θωPt. Equations (21)-(24) are standard as in the

literature.

We have already explained the three asset pricing equations (14), (15), (16). We observe that

Pt = 0 for all t always satisfies equation (14). we call such an equilibrium a bubbleless equilibrium.

Later we will show that there can exist an equilibrium in which Pt > 0 for all t. We call such an

equilibrium a bubbly equilibrium.

Note that in any bubbly equilibrium, the Kiyotaki-Moore type collateral constraint (6) is always

satisfied and hence our omission of this constraint in Section 3.1 is without loss of generality. To

verify this claim, we derive the following:

Bjt+1 =
Bjt+1

Rft
Rft ≤ θPtHjt+1Rft

= θHjt+1

βΛt+1

Λt
Pt+1

{
1 + [1− ω(1− θ)]

[∫
τ≤Qt+1

Qt+1−τ
τ f(τ)dτ

]}
βΛt+1

Λt

[
1 +

∫
τ≤Qt+1

Qt+1−τ
τ f(τ)dτ

]
≤ θPt+1Hjt+1 ≤ Pt+1Hjt+1, for ω ≥ 0, θ ∈ [0, 1] ,

where the first inequality follows from (5) and the second equality follows from (14) and (16). The

other equalities and inequalities are straightforward to derive.
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We now describe how the two types of equilibria work in the model. In a bubbleless equilibrium,

houses have no value and will not be traded. The credit market is essentially shut down because no

collateral is available. For highly subsidized entrepreneurs with τ jt ≤ Qt, investment is profitable.

These entrepreneurs use internal funds to finance investment. For entrepreneurs with τ jt > Qt,

investment is not profitable and hence they do not invest.

In a bubbly equilibrium, entrepreneurs with τ jt ≤ Qt borrow and sell houses to finance invest-

ment as much as possible until both the borrowing and resaleability constraints bind. Entrepreneurs

with τ jt > Qt do not invest. They are indifferent between saving and borrowing, and between buy-

ing and selling houses. To clear the bond and housing markets, their aggregate behavior is to save

and lend to highly subsidized entrepreneurs and also buy houses from them. In the special case of

ω = 0, house trading is liquid. Highly subsidized entrepreneurs with τ jt ≤ Qt sell all their houses

to finance investment. They will not borrow because they have no house collateral. To clear the

housing market, entrepreneurs with τ jt > Qt must purchase houses. Borrowing and saving take

place within these firms.

3.3 Bubbleless Steady State

We use a subscript f to denote a variable in an equilibrium without bubble. We also remove the

time subscript for any variable in the steady state. Using the steady-state version of equations (20)

and (22), we can show that

Rkf =
δ∫

τ≤Qf

1
τ f(τ)dτ

. (25)

Substituting Rkf into the steady-state version of equation (15) yields an equation for Qf .

Proposition 3 The equation

1− β(1− δ) = βδ

∫
max

(
1
τ ,

1
Qf

)
f(τ)dτ∫

τ≤Qf

1
τ f(τ)dτ

(26)

has a unique solution for Qf ∈ (τmin, τmax) . If Rkf in (25) satisfies

Rkf > αδ, (27)

then Qf is equal to Tobin’s Q in the bubbleless steady state.

Given Qf , we can derive the steady-state rental rate of capital Rkf from equation (25). We

then use (24) to determine the steady-state capital stock Kf . The steady-state investment, output,

and consumption are given by If = δKf , Yf = Kα
f , and Cf = Yf − If , respectively. Condition (27)
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ensures that Cf > 0. A sufficient condition for it in terms of primitives is given by α
∫

1
τ f(τ)dτ < 1,

since Qf ∈ (τmin, τmax) .

3.4 Bubbly Steady State

In this subsection we study the bubbly steady state in which Pt = P > 0 for all t. We remove the

time subscript and use a subscript b to indicate a bubbly steady state. Equation (14) implies that

the bubbly steady-state Tobin’s Q, denoted by Qb, satisfies the equation,

β−1 − 1

1− ω(1− θ)
=

∫
τ≤Qb

Qb − τ

τ
f(τ)dτ . (28)

By the Intermediate Value Theorem, if

β−1 − 1

1− ω(1− θ)
< τmax

∫
1

τ
f(τ)dτ − 1, (29)

then (28) has a unique solution Qb ∈ (τmin, τmax) . We can then derive the steady-state rental rate

of capital Rkb using equation (15),

Rkb =
1− β(1− δ)

β
∫
max

(
1
τ ,

1
Qb

)
f(τ)dτ

. (30)

We then use (24) to determine the steady-state capital stock Kb. The bubbly steady-state invest-

ment, output, and consumption are given by Ib = δKb, Yb = Kα
b , and Cb = Yb − Ib, respectively.

We use equation (20) to determined the steady-state house price P,

P

Yb
=

1

1− ω(1− θ)

⎡
⎣ δαβ

1− β(1− δ)

∫
max

(
1
τ ,

1
Qb

)
f(τ)dτ∫

τ≤Qb

1
τ f(τ)dτ

− α

⎤
⎦ . (31)

We need P > 0 and Cb > 0 for the existence of a bubbly steady state. The following proposition

provides a characterization.

Proposition 4 Suppose that condition (29) holds and that Rkb in (30) satisfies

Rkb > αδ. (32)

Then the bubbly and bubbleless steady states coexist if and only if

1 < β

[
1 + (1− ω + θω)

∫
τ≤Qf

Qf − τ

τ
f(τ)dτ

]
, (33)

where Qf is determined by (26).
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Condition (32) ensures that Cb > 0. If this condition is satisfied, then (27) also holds since we

can show that Rkb < Rkf . A sufficient condition for (32) in terms of primitives when τmin > 0 is

given by

τmin [1− β(1− δ)] > αβδ. (34)

Condition (33) ensures that P > 0. To interpret this condition, we recall the discussion following

Proposition 1. The right-hand side of (33) represents the steady-state benefit of purchasing one

unit of house when Tobin’s Q is equal to the bubbleless steady state value Qf . When this benefit

is larger than the unit cost, a housing bubble can exist.

The following proposition compares the two steady states.

Proposition 5 If the bubbleless and bubbly steady states coexist, then Qf > Qb, Rkb < Rkf ,

Rfb > Rff , Kb > Kf , Ib > If , and Yb > Yf .

This proposition shows that the existence of a housing bubble in the steady state allows en-

trepreneurs to finance more investment and accumulate more capital stock. This causes the rental

rate of capital and Tobin’s marginal Q to be lower and output to be higher in the bubbly steady

state than in the bubbleless steady state. However, it is not necessarily true that consumption

is higher in the bubbly steady state than in the bubbleless steady state. The intuition is that a

housing bubble may cause entrepreneurs to overinvest, causing fewer resources to be allocated to

consumption. Thus a housing bubble may reduce welfare. We will study this issue in Section 4.

Note that when ω = 0, house trading is liquid. Equations (14) and (16) imply that Rfb = 1

in the bubbly steady state and Rff < 1 in the bubbleless steady state. But when ω > 0, we must

have Rfb < 1 by (14) and (16). The intuition is that when ω = 0, houses and bonds are perfect

substitutes. Since houses are intrinsically useless in the model, the net interest rate of bonds must

be zero. But when ω > 0, houses are an illiquid asset. For houses and bonds to coexist in a bubbly

equilibrium, the net interest rate of bonds must be negative. To generate a positive steady-state

net interest rate, we can introduce economic growth. Specifically, we can assume that aggregate

productivity grows at a constant rate. See Miao and Wang (2013a) for a related analysis.

Proposition 5 shows that the interest rate in the bubbleless steady state is lower than that in

the bubbly steady state.15 The reason is that the housing bubble crowds out the bond demand,

thereby reducing the bond price and raising the interest rate. This result has an important policy

implication as we will show in Section 5.

15Tirole’s (1985) model also implies this result.
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3.5 Local Dynamics

We now study local dynamics around the bubbly and bubbleless steady states. Because of the

complexity of the model, we are unable to provide a full characterization. The following proposition

characterizes the bubbleless steady state for general distribution functions.

Proposition 6 When both the bubbly and bubbleless steady states exist, then the local equilibrium

around the bubbleless steady state is indeterminate of degree one. When only the bubbleless steady

state exists, then it is a saddle point and there is a unique bubbleless equilibrium converging to it.

The idea behind the proof of this proposition is the following. We use Proposition 2 to sim-

plify the equilibrium system to a system of four nonlinear difference equations for four unknown

variables Ct, Kt, Qt, and Pt. Only Kt is a predetermined variable. The other three variables are

nonpredetermined. We then linearize the equilibrium system around the bubbleless steady state to

obtain a linear system MXt+1 = Xt, where Xt = (Ĉt, K̂t, Q̂t, Pt)
′ and a hatted variable denotes log

deviation from the steady state. Pt is the deviation from 0. We check properties of the eigenvalues

of the coefficient matrix M . We can show that when both the bubbly and bubbleless steady states

exist, there are two eigenvalues outside the unit circle and two eigenvalues inside the unit circle.

This means that the local equilibrium around the bubbleless steady state is indeterminate of degree

one. In particular, given K0 and for any initial value P0 > 0 in the neighborhood of the bubble-

less steady state, there is a unique equilibrium path (Ct,Kt, Qt, Pt) converging to the bubbleless

steady state. That is, the housing bubble eventually bursts. However, when only the bubbleless

steady state exists, the matrix M has three eigenvalues inside the unit circle and one eigenvalue

outside the unit circle. This means that the bubbleless steady state is determinate and there is a

unique equilibrium converging to this steady state. Since Pt = 0 always satisfies equation (14), this

equilibrium must be bubbleless.

We now turn to the bubbly steady state. We are able to derive the following theoretical result

for a general distribution in the special case of ω (1− θ) = 0 and δ = 1.

Proposition 7 Let ω (1− θ) = 0 and δ = 1. Suppose that the bubbly steady state exists. Then

there is a unique local bubbly equilibrium converging to the bubbly steady state.

The idea of the proof is similar to that for Proposition 6. For general distributions and parameter

values, we are unable to derive theoretical results. However, we have verified numerically that the

results in Propositions 6 and 7 hold for a wide range of parameter values and for many different

types of distributions for the idiosyncratic shock. Note that Tirole (1985) and Miao and Wang

(2013a) prove similar results in other models of bubbles.
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4. Welfare Analysis

In this section we study the welfare implications of the bubbleless and bubbly equilibria. Both

equilibria are inefficient due to idiosyncratic policy distortions and credit constraints. We will take

these distortions as a given institutional feature and compare welfare between the bubbleless and

bubbly equilibria.

4.1 Welfare Comparison

Let Uf (K0) and Ub (K0) denote the household life-time utility level in the bubbleless equilibrium

and in the bubbly equilibrium, respectively, given the economy starts at the aggregate capital stock

K0. Then the bubbleless and bubbly steady-state life-time utility levels are given by Uf (Kf ) and

Ub (Kb), respectively.

We first provide a theoretical result for a special case.

Proposition 8 Let δ = 1 and ω (1− θ) = 0. Suppose that both bubbly and bubbleless steady states

exist. If
∫
τ≤Qf

1
τ f (τ ) dτ > 1, then Uf (Kf ) > Ub (Kb) and Uf (K0) > Ub (K0) .

16

Here we sketch the key idea of the proof. We show that the saving rate st ≡ It/Yt = smust be at

the respective constant steady state value for all t in both the bubbly and bubbleless equilibria. In

addition, Tobin’s Q must be at the constant steady state value during the transition. Importantly,

the bubble-to-output ratio is also constant over time in the bubbly equilibrium. However, the

capital stock, investment, consumption, and output change over time. In particular, the law of

motion for capital satisfies Kt+1 = It = stYt = sKα
t and consumption is given by Ct = (1− s)Kα

t .

We can then write the life-time utility level as

∞∑
t=0

βt ln(Ct) =
ln(1− s)

1− β
+

α

1− αβ

[
β

1− β
ln(s) + ln(K0)

]
. (35)

To compare welfare, we only need to compare the equilibrium saving rate. It turns out that the

saving rate in the bubbly equilibrium is too high, generating too much investment. This causes

welfare to be lower.

For any given non-steady-state value K0, the life-time utility level in (35) is concave in s

and maximized at s = αβ. The assumption in Proposition 8 ensures that sf > α and hence

sb > sf > αβ. It follows that Uf (K0) > Ub(K0).

In any steady state with δ = 1, K = I = sKα. It follows that the steady-state capital stock

16In the appendix, we prove that a sufficient condition for Uf (K0) > Ub (K0) is that the support of the distribution
for τ is [0, 1] .
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satisfies K = s1/(1−α). Using (35), we can then compute the steady-state welfare as

U =
1

1− β

[
ln (1− s) +

α

1− α
ln (s)

]
.

It is a concave function of s and is maximized at s = α. Since sb > sf > α, it follows that

Uf (Kf ) > Ub (Kb).

4.2 Examples

We first provide an explicitly solved example to illustrate Proposition 8 as well as Propositions 3-7.

Let δ = 1, ω (1− θ) = 0, and f (τ) = ητη−1, η > 1, for 0 ≤ τ ≤ 1. By Proposition 3, we can

compute the following values in the bubbleless steady state:

Qf =

[
β (η − 1)

η − β

] 1
η

, Rkf =
η − 1

η

(
η/β − 1

η − 1

) η−1
η

.

Along the bubbleless equilibrium path, Qt = Qf and Rkt = Rkf for all t and they are the unique

local equilibrium solutions. In addition, the saving rate is also constant and given by

sf =
It
Yt

=
If
Yf

=
Kf

Yf
=

α

Rkf
=

αη

η − 1

(
η − 1

η/β − 1

) η−1
η

. (36)

Consider next the bubbly equilibrium. By equations (28) and (30), the steady-state Tobin’s Q

and the rental rate of capital are given by

Qb = [(1/β − 1) (η − 1)]
1
η = Rkb.

Along the bubbly equilibrium path, Qt = Rkt = Qb for all t and this is the unique local equilibrium

solution. In addition, the saving rate is given by

sb =
It
Yt

=
Ib
Yb

=
Kb

Yb
=

α

Rkb
= α (1/β − 1)−

1
η (η − 1)−

1
η .

By (31), the steady-state bubble to output ratio is given by

P

Yb
=

α

η (1/β − 1)
− α.

Along the transition path, the bubble-to-output ratio is also equal to the above constant value.

We now check the conditions in Proposition 4. For (29) to hold, we need η < 1/ (1− β) . For

(32) to hold, we need (
1

β
− 1

) 1
η

(η − 1)
1
η > α. (37)
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This condition ensures that Cb > 0. To ensure P/Yb > 0, i.e. for (33) to hold, we need

η <
β

1− β
. (38)

Thus, if conditions (37) and (38) are satisfied, then the bubbly and bubbleless steady states coexist.

It can be verified numerically that these two conditions hold for a wide range of parameter values.

We can verify Proposition 5 and show that Qf > Qb, Rkb < Rkf , and sb > sf . We can also

verify the assumption in Proposition 8 holds so that sf > α.17 Thus Proposition 8 is valid.

Finally, we provide some numerical examples for general values of ω and θ. Suppose that one

period corresponds to a quarter. We set α = 0.3, β = 0.99, δ = 0.025, ω = 0.2, and θ = 0.75.

We set η = 5.7 so that the bubbleless steady-state capital to output ratio is equal to 10 as in the

US data. We find the following numerical results: in the bubbleless steady state, Kf = 28.67,

Yf = 2.737, If = 0.7166, Cf = 2.020, sf = 0.2619, Qf = 0.9324, Rkf = 0.02864, Rff = 0.8839,

and Uf (Kf ) = 70.31; in the bubbly steady state, Kb = 46.11, Yb = 3.156, Ib = 1.153, Cb = 2.003,

sb = 0.3653, Qb = 0.5912, Rkb = 0.02053, Rfb = 0.9995, P = 10.30, and Ub (Kb) = 69.48. Clearly

the saving rate in the bubbly steady state is 39% higher than that in the bubbleless steady state.

But the life-time utility level in the bubbly steady state is about 1.2% lower than that in the

bubbleless steady state. We can measure the welfare cost as a proportional compensation for

consumption in the bubbly equilibrium such that the household is indifferent between the bubbly

and bubbleless equilibria.18 We find that the steady-state welfare cost is 0.83% of consumption.

The welfare cost is even larger during the transition period. Figure 2 plots the paths of life-

time utility levels in the bubbly and bubbleless equilibria for two initial values of the capital stock,

K0 = 1.05Kb and K0 = 0.95Kf . The initial utility gap is large and then gradually shrinks over

time. In the long run, the difference in utility is still significant. When measured in terms of

consumption compensation, the initial welfare cost is equal to 7.45% and 7.48% for K0 = 1.05Kb

and K0 = 0.95Kf , respectively.

5. Policy Analysis

In the previous section we have shown that housing bubbles generate excessive investment and

reduce welfare. In this section we will study the policies that can eliminate housing bubbles and

17Using (36), one can verify that sf is decreasing in η when η > 1 by checking derivatives with respect to η. The
result then follows from (37) and (38).

18Formally, define the welfare cost as Δ such that

∞∑
t=0

βt ln (Ct,f ) =
∞∑
t=0

βt ln ((1 +Δ)Ct,b) ,

where {Ct,f} and {Ct,b} denote the consumption streams in the bubbleless and bubbly equilibria, respectively.
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allow the economy to achieve the bubbleless equilibrium. We will introduce one policy at a time

in the baseline model presented in Section 2. We emphasize that both the bubbly and bubbleless

equilibria are inefficient because of the presence of idiosyncratic tax distortions and credit market

imperfections. We take these distortions as a given institutional feature. To achieve the first-best

allocation, one has to remove the idiosyncratic policy distortions and credit market imperfections.

Study of such policies is beyond the scope of this paper.

5.1 Loan-to-Value Ratio

Recently some countries, such as Hungary, Norway, Sweden and the UK, have adopted maximum

loan-to-value (LTV) ratios for mortgages as a macroprudential instrument to regulate the housing

market. The intuition is that the LTV ratio can control the credit limit and hence stabilize the

credit market. In our model, lowering the LTV ratio θ reduces the credit limit and hence reduces

the collateral yield generated by the housing bubble when house trading is illiquid ω > 0. This

can reduce the benefit of holding houses. When θ is sufficiently small, the benefit is sufficiently

small so that the expression on the right-hand side of (33) is smaller than 1,19 causing the existence

condition for a bubbly equilibrium to be violated. In this case, a bubbly equilibrium cannot exist.

This result is consistent with the general view that one important cause of the housing bubble

is excessive credit. If the policymaker can adequately control credit, a housing bubble cannot exist.

Note that this result depends on the assumption that ω > 0. When house trading is liquid (i.e.,

ω = 0), entrepreneurs can sell all of their house holdings to finance investment and be left with no

collateral for borrowing. In this case, controlling the LTV ratio is an ineffective way to eliminate a

bubble.

5.2 Property Tax

Next we consider the impact of the property tax. Suppose that the government taxes the property

and transfers the tax revenue to households in a lump-sum manner. Then the entrepreneur’s

flow-of-funds constraint becomes

Djt = RktKjt − τ jtIjt − Pt(Hjt+1 −Hjt) +
Bjt+1

Rft
−Bjt − τHPtHjt, (39)

where τH represents the tax rate on the property. In this case, we can characterize the equilibrium

system as in Proposition 2 with equations (14) and (20) replaced by

Pt = β
Λt+1

Λt
Pt+1

[
1− τH + (1− ω + ωθ − τH)

∫
τ≤Qt+1

Qt+1 − τ

τ
f(τ)dτ

]
,

19Note that Qf is determined in (26) and is independent of θ and ω.
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and

It = [RktKt + (1− ω + θω − τH)Pt]

∫
τ≤Qt

1

τ
f(τ)dτ.

Other equations are the same. The interpretation of the preceding two equations is straightforward.

Holding one unit of house means one has to pay τH units of property taxes. This will lower

the liquidity premium because it reduces the entrepreneur’s net worth and investment. As in

Proposition 4, we can show that the bubbly and bubbleless steady states coexist if and only if20

1 < β

[
1− τH + (1− ω + θω − τH)

∫
τ≤Qf

Qf − τ

τ
f(τ)dτ

]
.

Since Qf is independent of τH , this condition will be violated when τH is sufficiently large. In this

case a bubbly equilibrium cannot exist.

5.3 Property Transaction Tax

It is often argued that the Tobin tax on financial transactions can stabilize the financial market.

We now consider the impact of the Tobin tax or the property transaction tax in the housing market.

Suppose that the transaction of houses is taxed at the rate φ ∈ (0, 1) and that the tax revenue

is rebated to households in a lump-sum manner. Then entrepreneur j’s flow-of-funds constraint

becomes

Djt = RktKjt − τ jtIjt − Pt(Hjt+1 −Hjt) +
Bjt+1

Rft
−Bjt − φPt|Hjt+1 −Hjt|. (40)

His decision problem is to solve (9) subject to (3), (4), (5), (6), (7), (8), and (40).

Proposition 9 The equilibrium system is given by the following equations:

(1 + φ)Pt = β
Λt+1

Λt
Pt+1

{
1 + φ+ θ

∫
1−φ−θ
1+φ−θ

Qt+1<τ≤Qt+1

Qt+1 − τ

τ
f(τ)dτ (41)

+

∫
τ≤ 1−φ−θ

1+φ−θ
Qt+1

[
[θω + (1− ω)(1− φ)]

Qt+1 − τ

τ
− 2φ (1− ω)

]
f(τ)dτ

}
,

20Note that we need conditions (32) and

β−1 − 1 + τH

1− ω + ωθ − τH
< τmax

∫
1

τ
f (τ) dτ − 1

to hold. The latter condition is analogous to (29).
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It = RktKt

∫
τ≤Qt

1

τ
f (τ) dτ + PtHtθ

∫
1−φ−θ
1+φ+θ

Qt<τ≤Qt

1

τ
f (τ) dτ

+PtHt [ωθ + (1− ω) (1− φ)]

∫
τ≤ 1−φ−θ

1+φ−θ
Qt

1

τ
f (τ) dτ , (42)

and equations (15), (16), (21), (22), (23) and (24) for nine variables {Ct, It, Yt, Kt+1, Wt, Rkt,

Rft, Qt, Pt}. The usual transversality conditions hold.

The presence of the property transaction tax implies a different calculation of the cost and

benefit arising from house trading. Selling one dollar’s worth of a house gives the seller only 1− φ

dollars and buying one dollar’s worth of a house costs the buyer 1 + φ dollars. Thus there may

exist cases where entrepreneurs do not buy or sell houses in order to avoid transaction taxes.

We now describe the equilibrium in the presence of property transaction taxes as follows. For

sufficiently subsidized entrepreneurs with τ jt ≤ 1−φ−θ
1+φ−θQt, they invest as much as possible until

the dividend constraint (4) binds.21 They finance investment by selling as many houses as possible

until the resaleability constraint (7) binds, and by borrowing as much as possible until the collateral

constraint (5) binds. For entrepreneurs in the middle with 1−φ−θ
1+φ−θQt < τ jt ≤ Qt, it is profitable

for them to invest. But the investment subsidy is not high enough to compensate for the property

transaction tax. Thus these entrepreneurs do not buy or sell houses. They finance investment

exclusively by borrowing and with internal funds. Finally, for less subsidized entrepreneurs with

τ jt ≥ Qt, investment is not profitable. They do not invest and are indifferent among any feasible

choices of house and bond holdings. In order to clear the housing market and the bond market, they

buy houses from highly subsidized entrepreneurs and also buy bonds from all other entrepreneurs.

We can interpret the asset pricing equation (41) as follows. The expression on the left-hand side

represents the purchase cost of a unit of house. The expression on the right-hand represents the

discounted benefit. The future benefit consists of the holding value (1 + φ)Pt+1 and the liquidity

premium given by the two integral terms. The liquidity premium in the first line of equation (41)

describes the case where the entrepreneur does not buy or sell any house. He uses borrowing to

finance investment. The liquidity premium in the second line of equation (41) reflects the fact that

investment is financed through both borrowing and sale of houses, θω + (1 − ω)(1 − φ). The last

negative term represents the transaction tax incurred from buying and selling of the fraction 1−ω

of houses.

As in the baseline model presented in Section 2, there is a bubbleless equilibrium in which

Pt = 0 for all t. In this equilibrium, houses are not traded and the credit market is shut down

because no house collateral is available. There may exist many bubbly equilibria in which Pt > 0

for all t. But, by adapting the proof of Proposition 4, we can show that there is a unique bubbly

21If φ > 1− θ, this case cannot happen since τ jt must be nonnegative.
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steady state in which Pt = P > 0 for all t if and only if22

1 < β

{
1 + θ

∫
1−φ−θ
1+φ−θ

Qf<τ≤Qf

Qf − τ

τ (1 + φ)
f(τ)dτ

+

∫
τ≤ 1−φ−θ

1+φ−θ
Qf

[
[θω + (1− ω)(1 − φ)]

Qf − τ

τ (1 + φ)
− 2φ (1− ω)

1 + φ

]
f(τ)dτ

}
,

where Qf is determined by (26). Since the right-hand side of the above inequality is decreasing in

φ, when φ is sufficiently high the inequality is violated. As a result, a housing bubble cannot exist.

5.4 Asset Purchases

The government can manipulate the interest rate by intervening in the private bond market. When

the government participates in trading in the private bond market, the bond market-clearing con-

dition is given by ∫ 1

0
Bjtdj = Bgt, (43)

where Bgt > 0 represents the government’s bond holdings. The government budget constraint is

given by ∫
(1− τ jt)Ijtdj +

Bgt+1

Rft
= Bgt + Γt,

where Γt represents lump-sum taxes net of government spending.

By Proposition 1 and the bond market clearing condition (43), we can derive aggregate invest-

ment

It = [RktYt + (1− ω + ωθ)Pt −Bgt]

∫
τ≤Qt

1

τ
f(τ)dτ .

Other equilibrium conditions described in Proposition 2 remain unchanged.

Note that the government’s trading in the private bond market does not affect the borrowing

constraint (5) faced by the entrepreneurs. But it does affect the entrepreneurs’ debt liabilities.

When setting Bgt = (1 − ω + ωθ)Pt, then the debt liabilities to the government will offset the

liquidity benefit provided by the house. In this case investment It is effectively financed by internal

funds only. Hence, a housing bubble does not provide any liquidity to entrepreneurs and hence it

cannot exist. The economy will reach the bubbleless equilibrium. Once the bubbleless equilibrium

is reached, the government does not need to purchase any private bonds since Bgt = 0.

22Note that we need conditions (32) and

β−1−1 < θ

∫
1−φ−θ
1+φ−θ

τmax<τ≤τmax

τmax − τ

τ (1 + φ)
f (τ) dτ+

∫
τ≤ 1−φ−θ

1+φ−θ
τmax

[
[θω + (1− ω) (1− φ)]

τmax − τ

τ (1 + φ)
− 2φ (1 + ω)

1 + φ

]
f (τ) dτ

to hold. The latter condition is analogous to (29).
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Notice that the interest rate in the bubbleless steady state is lower than that in the bubbly

steady state by Proposition 5. The intuition is that the government purchase of private bonds

raises the demand for private bonds and hence the bond price. This means that the asset purchase

policy will not only eliminate housing bubbles, but also lower the interest rate in the long run. This

result contradicts the usual view that the central bank should increase interest rates in response to a

growing bubble. Thus the leaning against the wind monetary policy lacks a theoretical foundation.

Gaĺı (2013) also makes this point in an overlapping generations model of bubbles.

6. Conclusion

In this paper we have presented a theory of credit-driven housing bubbles in an infinite-horizon

production economy, in which entrepreneurs face idiosyncratic investment tax distortions and credit

constraints. To focus on the speculative nature of rational bubbles, we assume that housing is an

intrinsically useless asset. Housing also serves as collateral for borrowing. A housing bubble can

form because it commands a liquidity premium. The housing bubble can provide liquidity and

relax credit constraint, but it can also generate inefficient overinvestment. Property taxes, Tobin’s

taxes, macroprudential policy, and credit policy can prevent the housing bubble.

For future research, it would be interesting to introduce housing rents and study the disconnect

between housing prices and rents. Miao, Wang, and Zha (2014) have provided such a study. For

simplicity, we have ignored aggregate uncertainty and the volatility generated by housing bubbles.

Excessive volatility is also a potential cost of housing bubbles. In addition, asset bubbles may

contribute to business cycles. Introducing bubbles into the dynamic stochastic general equilibrium

framework and studying their quantitative implications should be an exciting research topic. Miao,

Wang, and Xu (2013) and Miao, Wang, and Zha (2014) have initiated such research.
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Appendix

A Data Description

We download the data from the Department of Economics of Queen’s University via the link

www.econ.queensu.ca/files/other/House Price indices%20(OECD).xls. All series are quarterly and

seasonally adjusted. The data are defined as follows.

1. The nominal house price index of the US is the all-transaction index (estimated using sales

price and appraisal data) from Federal Housing Finance Agency (FHFA).

2. The nominal house price index of Japan is the nationwide urban land price index from the

Japan Real Estate Institute.

3. The nominal house price index of Spain is the average price per square meter of private

housing (more than one year old) from the Bank of Spain.

4. The nominal house price index of Greece is the price per square meter of residential properties

(all flats) in urban areas from the Bank of Greece.

5. The real house price index used in Figure 1 is the above nominal house price index deflated

by the private consumption deflator. The average real index in 2000 is normalized to 100.

6. The price-income ratio used in Figure 1 is the ratio of the nominal house price index to the

nominal per capita disposable income. The sample average is normalized to 100.

7. The price-rental ratio used in Figure 1 is the ratio of the nominal house price index to the

rent component of the consumer price index. The sample average is normalized to 100.
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B Proofs

Proof of Proposition 1: (i) By (12) and (13), when τ jt ≤ Qt, we must have

τ jtIjt = RktKjt +
Bjt+1

Rft
−Bjt − Pt(Hjt+1 −Hjt). (B.1)

In addition, it follows from (5) and (7) that both the borrowing and resaleability constraints bind.

When τ jt > Qt, it follows from (8) that Ijt = 0. Because Bjt+1 and Hjt+1 are canceled out in the

objective of (12), the entrepreneur is indifferent among the feasible choices of Bjt+1 and Hjt+1.

(ii) Substituting the decision rules in part (i) into (12) and matching coefficients, we obtain

vt(τ jt) =

{
Qt

τ jt
Rkt + (1− δ)Qt if τ jt ≤ Qt,

Rkt + (1− δ)Qt if τ jt > Qt

, (B.2)

pt(τ jt) =

{
Pt + (1− ω + ωθ)

(
Qt

τ jt
− 1

)
Pt if τ jt ≤ Qt,

Pt if τ jt > Qt

, (B.3)

ϕt(τ jt) =

{
Qt

τ jt
if τ jt ≤ Qt,

1 if τ jt > Qt

. (B.4)

Using equations (10) and (11), and the definition of Qt, we can derive equations (14), (15), and

(16). The transversality conditions follow from the infinite-horizon dynamic optimization problem,

e.g., Ekeland and Scheinkman (1986). Q.E.D.

Proof of Proposition 2: By part (i) of Proposition 1, we can derive aggregate investment

It =

∫
τ jt≤Qt

1

τ jt
[RktKjt + (1− ω + θω)PtHjt −Bjt] dj.

Since τ jt is independently and identically distributed and since Kjt, Bjt, andHjt are predetermined,

τ jt is independent of these variables. By a law of large numbers, we obtain

It =

∫
τ jt≤Qt

1
τ jt

[RktKjt + (1− ω + θω)PtHjt −Bjt] dj∫
τ jt≤Qt

dj

∫
τ jt≤Qt

dj

=

[∫
τjt≤Qt

dj

] [∫
τ jt≤Qt

1
τ jt

dj∫
τ jt≤Qt

dj

][∫
τ jt≤Qt

[RktKjt + (1− ω + θω)PtHjt −Bjt] dj∫
τ jt≤Qt

dj

]

=

∫
τ jt≤Qt

1

τ jt
dj

[
Rkt

∫
Kjtdj + (1− ω + θω)Pt

∫
Hjtdj −

∫
Bjtdj

]

= [RktKjt + (1− ω + θω)Pt]

∫
τ≤Qt

1

τ
f (τ) dτ,
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where we have used the market clearing conditions to derive the last equality.

By (1) and the labor market-clearing condition,

1 = Nt =

∫
Njtdj =

(
1− α

Wt

) 1
α
∫

Kjtdj =

(
1− α

Wt

) 1
α

Kt.

From this equation, we can derive other equations in the proposition. Q.E.D.

Proof of Proposition 3: The right hand side of (26) is strictly decreasing in Qf . When Qf

approaches the lower support of the distribution for τ jt, the right-hand side approaches infinite.

When Qf approaches the upper support of the distribution, the right-hand side approaches βδ <

1−β(1−δ). Thus, by the Intermediate Value Theorem, there is a unique solution Qf ∈ (τmin, τmax)

to equation (26). Condition (27) ensures that Cf > 0. Q.E.D.

Proof of Propositions 4 and 5: The proof consists of two parts.

Part I. Suppose that the bubbly and bubbly steady states coexist. We then prove Proposition

5 and the necessity of condition (33).

Step 1. We prove Qb < Qf . By equation (26),

1− β(1− δ) = βδ

∫
max

(
1
τ ,

1
Qf

)
f(τ)dτ∫

τ≤Qf

1
τ f(τ)dτ

. (B.5)

Equation (31) and P > 0 imply that

Rkb <
δ∫

τ≤Qb

1
τ f(τ)dτ

.

Combining equation (30) and the preceding inequality, we can derive that

1− β(1− δ) = βRkb

∫
max

(
1

τ
,
1

Qb

)
f(τ)dτ

< βδ

[
1 +

1− F (Qb)

Qb

∫
τ≤Qb

1
τ f(τ)dτ

]
.

Combining the preceding inequality with (B.5) yields

βδ

∫
max

(
1
τ ,

1
Qf

)
f(τ)dτ∫

τ≤Qf

1
τ f(τ)dτ

< βδ

[
1 +

1− F (Qb)

Qb

∫
τ≤Qb

1
τ f(τ)dτ

]
.
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This inequality is equivalent to the following inequality:

1− F (Qb)

Qb

∫
τ≤Qb

1
τ f(τ)dτ

>
1− F (Qf )

Qf

∫
τ≤Qf

1
τ f(τ)dτ

.

Thus Qb < Qf .

Step 2. We prove Rkf > Rkb. The steady-state version of equation (15) is given by

1 = β

[
(1− δ) +Rk

∫
max

(
1

τ
,
1

Q

)
f(τ)dτ

]
. (B.6)

The above equation implies that Rkf > Rkb since Qb < Qf .

Step 3. Because Rkb = αKα−1
b < Rkf = αKα−1

f , we have Kb > Kf . Hence, Yb = Kα
b > Yf =

Kα
b , Ib = δKb > If = δKf . In addition, equation (16) implies that 1/Rfb = β

∫
max(Qb

τ , 1)f(τ )dτ <

β
∫
max(

Qf

τ , 1)f(τ )dτ = 1/Rff , i.e., Rfb > Rff .

Step 4. In the bubbly steady state, equation (14) implies that

1 = β

[
1 + (1− ω + ωθ)

∫
τ≤Qb

Qb − τ

τ
f(τ)dτ

]
. (B.7)

Since Qb < Qf , condition (33) must hold. This proves the necessity of (33) as well as Proposition

5.

Part II. Now, we suppose that conditions (29), (32), and (33) hold. We then prove that the

bubbly and bubbleless steady states coexist.

Step 1. The right-hand side of (28) is strictly increasing in Qb. It is equal to 0 when Qb = τmin

and equal to τmax

∫
1
τ f(τ)dτ − 1 when Qb = τmax. If condition (29) holds, then (28) has a unique

solution Qb ∈ (τmin, τmax) by the Intermediate Value Theorem.

Step 2. By (B.7) and condition (33), Qb < Qf , where Qf is given by equation (26). By Step 2

of Part I, Rkb < Rkf . Condition (32) implies that Rkf > Rkb > αδ. By Proposition 3, a bubbleless

steady state exists.

Step 3. To show the existence of a bubbly steady state, we must show Cb > 0 and P > 0.
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Condition (32) ensures that Cb > 0 holds. We now check P > 0. By (31),

P

Yb
=

1

1− ω(1− θ)

⎡
⎣ δαβ

1− β(1− δ)

∫
max

(
1
τ ,

1
Qb

)
f(τ)dτ∫

τ≤Qb

1
τ f(τ)dτ

− α

⎤
⎦

>
1

1− ω(1− θ)

⎡
⎣ δαβ

1− β(1− δ)

∫
max

(
1
τ ,

1
Qf

)
f(τ)dτ∫

τ≤Qf

1
τ f(τ)dτ

− α

⎤
⎦

=
1

1− ω(1− θ)

[
δαβ

1− β(1− δ)

1− β(1− δ)

βδ
− α

]
= 0, (B.8)

where the first inequality follows from Qf > Qb by Step 2 of Part II and the second equality follows

from equation (26). Q.E.D.

Proof of Proposition 6: Denote by F the cumulative distribution function of τ and define

J(Qt) =
∫ Qt

τmin

1
τ f(τ)dτ . We can use Proposition 2 to show that the equilibrium system can be

described by the following four difference equations:

Ct +Kt+1 − (1− δ)Kt = Kα
t , (B.9)

Qt

Ct
= β

1

Ct+1

{
(1− δ)Qt+1 + αKα−1

t+1 [Qt+1J(Qt+1) + 1− F (Qt+1)]
}
, (B.10)

Pt

Ct
= β

Pt+1

Ct+1
{1 + (1− ω + ωθ)[Qt+1J(Qt+1)− F (Qt+1)]} , (B.11)

Kt+1 − (1− δ)Kt = [αKα
t + (1− ω + ωθ)Pt]J(Qt), (B.12)

for four unknowns {Kt, Ct, Qt, Pt}. Only Kt is predetermined. The other three variables are

nonpredetermined.

Linearizing Pt around zero and log-linearizing Qt, Kt and Ct around their bubbleless steady

state values, we obtain
Cf

Kα
f

Ĉt +
Kf

Kα
f

K̂t+1 − (1− δ)Kf

Kα
f

K̂t = αK̂t,

Q̂t − Ĉt = −Ĉt+1 − (1− α)[1− β(1− δ)]K̂t+1 + βQ̂t+1,

Pt = β {1 + (1− ω + ωθ)[QfJ(Qf )− F (Qf )]}Pt+1, (B.13)

K̂t+1 − (1− δ)K̂t = δ
f(Qf )

J(Qf )
Q̂t + αδK̂t + (1− ω + ωθ)

J(Qf )

Kf
Pt,

where Ĉt, K̂t, and Q̂t denote log-deviation from the steady state. We rewrite the system in the
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following matrix form:

B

⎡
⎢⎢⎢⎢⎣
Ĉt+1

K̂t+1

Q̂t+1

Pt+1

⎤
⎥⎥⎥⎥⎦ = G

⎡
⎢⎢⎢⎢⎣
Ĉt

K̂t

Q̂t

Pt

⎤
⎥⎥⎥⎥⎦ ,

where

B =

⎡
⎢⎢⎢⎢⎣

0 −Kf

Kα
f

0 0

−1 −(1− α)(1 − β + βδ) β 0

0 0 0 B34

0 1 0 0

⎤
⎥⎥⎥⎥⎦ ,

G =

⎡
⎢⎢⎢⎢⎢⎣

Cf

Kα
f

− (1−δ)Kf

Kα
f

− α 0 0

−1 0 1 0

0 0 0 1

0 1− δ + αδ δ
f(Qf )
J(Qf )

(1− ω + ωθ)
J(Qf )
Kf

⎤
⎥⎥⎥⎥⎥⎦ ,

with

B34 ≡ β{1 + (1− ω + ωθ)[QfJ(Qf )− F (Qf )]}.

It is straightforward to check that G is invertible.

To study the local dynamics around the bubbleless steady state, we study the eigenvalues of

the matrix M ≡ G−1B.

First, we check that 0 must be an eigenvalue of matrix M . Note that matrix B is singular

because its columns 1 and 3 are linearly dependent. Thus det(M) = det(M − 0 · I) = 0, implying

that 0 is an eigenvalue.

Second, note that

det(M −B34 · I) = det[G−1B −B34 ·G−1G]

= det(G−1) · det(B −B34G)

= 0.

Thus B34 = β{1 + (1 − ω + ωθ)[QfJ(Qf ) − F (Qf )]} is an eigenvalue of matrix M . Let λ1 ≡ B34

denote this eigenvalue.

Third, we can show that the other two eigenvalues are positive real numbers, with one greater

than 1 and the other smaller than 1. Let λ2 and λ3 denote these two eigenvalues. We can then

write

det(M − λI) = λ(λ1 − λ)(−λ2 + bλ+ c),
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where

b ≡ 1

d

{
[1 + β(1− δ + αδ)]

Cf

Kα
f

+ (1− α)(1 − β + βδ)δ
f(Qf )

J(Qf )

Cf

Kα
f

+(2− δ)αf(Qf) + αδ
f(Qf )

J(Qf )

}
,

c ≡ −1

d

[
β
Cf

Kα
f

+ δK1−α
f

f(Qf )

J(Qf )

]
,

d ≡ (1− δ + αδ)
Cf

Kα
f

+ α(1− δ)f(Qf ) + αδ
f(Qf )

J(Qf )
> 0.

Since c < 0, it follows that λ2λ3 > 0. We can also show that

−1 + b+ c =
δ(1− α)

d

Cf

Yf

[
(1− β) + (1− β + βδ)

f(Qf )

J(Qf )

]
> 0.

Thus the quadratic equation always has two real solutions, with one larger than 1 and the other

smaller than 1.

Without loss of generality, we suppose that λ2 < 1 < λ3. We then have two eigenvalues (0 and

λ2) inside the unit circle and one (λ3) outside the unit circle. Whether the local dynamic around the

bubbleless steady state is determinate depends on whether λ1 = β {1 + (1− ω + ωθ) [QfJ(Qf )− F (Qf )]}
is smaller than 1. By Proposition 4, when both the bubbly and bubbleless steady states exist, con-

dition (33) must hold, i.e.,

λ1 = β {1 + (1− ω + ωθ) [QfJ(Qf )− F (Qf )]} > 1,

implying that the matrix M has two eigenvalues outside the unit circle and two eigenvalues inside

the unit circle. Since there are three nonpredetermined variables, this means that the bubbleless

steady state is a saddle with indeterminacy of degree 1.

When only the bubbleless steady state exists, we must have

λ1 = β {1 + (1− ω + ωθ) [QfJ(Qf )− F (Qf )]} ≤ 1.

If λ1 < 1, then the matrix M has three eigenvalues inside the unit circles and one eigenvalue outside

the unit circle, implying that the local dynamic is determinate. If λ1 = 1, then (B.13) implies that

Pt = Pt+1. Since limt→+∞ Pt = 0, it follows that Pt = 0 for all t. In both cases, there is a unique

equilibrium, which is bubbleless. Q.E.D.

Proof of Proposition 7: See the proofs of Proposition 8 and Lemma 2. Q.E.D.
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Proof of Proposition 8: Consider the equilibrium without bubble first. Let δ = 1 and ω (1− θ) =

0. Equation (15) becomes

Qt

(1− st)Yt
=

β

(1− st+1)Yt+1

[
αYt+1

stYt

∫
max

(
Qt+1

τ
, 1

)
f(τ)dτ

]
.

We can further reduce the above equation to

Qt

1− st
=

β

1− st+1

α

st

∫
max

(
Qt+1

τ
, 1

)
f(τ)dτ . (B.14)

Equation (20) implies that

Kt+1 = It = αYt

∫
τ≤Qt

1

τ
f(τ)dτ = stYt,

or

st = α

∫
τ≤Qt

1

τ
f(τ)dτ . (B.15)

Hence the system of two difference equations (B.14) and (B.15) determine the bubbleless equilibrium

trajectories for Qt and st. Clearly a constant steady state is a solution to the system. The following

lemma shows that this is the unique local solution.

Lemma 1 There is a unique local solution to the system of two equations (B.14) and (B.15), which

is the bubbleless steady state.

Proof. We use F to denote the cumulative distribution function of τ and define H (Qt) ≡∫
τ≤Qt

1
τ f(τ)dτ . In the steady state, equations (B.14) and (B.15) imply that

Qf =
βα

sf
[QfH (Qf ) + 1− F (Qf )] ,

sf = αH (Qf ) .

Then log-linearizing the system around this steady state, we obtain

Q̂t +
sf

1− sf
ŝt =

sf
1− sf

ŝt+1 − ŝt + βQ̂t+1,

ŝt =
f (Qf )

H (Qf )
Q̂t.

We rewrite the above two equations as

Bf

[
ŝt+1

Q̂t+1

]
= Gf

[
ŝt

Q̂t

]
,
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where

Bf =

[
sf

1−sf
β

0 0

]
,

Gf =

⎡
⎣ 1

1−sf
1

1 − f(Qf)
H(Qf)

⎤
⎦ .

In order to understand the local dynamics around this steady state, we need to study the two

eigenvalues of the matrix G−1
f Bf . They are 0 and λf where

λf =

sf
1−sf

f(Qf)
H(Qf)

+ β

1
1−sf

f(Qf)
H(Qf)

+ 1
.

It is straightforward that 0 < λf < 1 since 0 <
f(Qf)
H(Qf)

sf
1−sf

< 1
1−sf

f(Qf)
H(Qf)

and 0 < β < 1. This

means the two eigenvalues are both inside the unit circle. Therefore there is a unique local solution

to the system since both st and Qt are nonpredetermined.

The above lemma shows that the steady state is the unique solution to the system of two

equations (B.14) and (B.15) for st and Qt in the neighborhood of the bubbleless steady state. We

then use these two equations to determine Qf by

1

β
− 1 =

1− F (Qf )

Qf

∫
τ≤Qf

1
τ f(τ)dτ

. (B.16)

Since limQf→τmin

1−F (Qf )

Qf

∫
τ≤Qf

1
τ
f(τ)dτ

= +∞ and limQf→τmax

1−F (Qf )

Qf

∫
τ≤Qf

1
τ
f(τ )dτ

= 0, by the Intermediate

Value Theorem, there is a unique solution in (τmin, τmax). Once Qf is determined, then the saving

rate is given by

sf = αβ

∫
max

(
1

τ
,
1

Qf

)
f(τ)dτ . (B.17)

from equation (B.14).

We need sf ∈ (0, 1) for a bubbleless equilibrium to exist. This condition is equivalent to (27).

This is because (27) implies that 1∫
τ≤Qf

1
τ
f(τ)dτ

> α. By equation (B.15), sf = α
∫
τ≤Qf

1
τ f (τ) dτ < 1.

We compute the life-time utility as

Uf (K0) =

∞∑
t=0

βt[ln(1− sf ) + ln(Yt)] =
ln(1− sf )

1− β
+ α

∞∑
t=0

βt ln(Kt),

where sf is given by equation (B.17) and

ln(Kt+1) = ln (sfYt) = ln(sf ) + α ln(Kt).
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Hence, the welfare for any given K0 is given by

Uf (K0) =
ln(1− sf )

1− β
+

α

1− αβ

[
β

1− β
ln(sf ) + ln(K0)

]
. (B.18)

Next, consider the equilibrium path to the bubbly steady state. Equation (B.14) still holds.

Equation (20) becomes

Kt+1 = It = (αYt + Pt)

∫
τ≤Qt

1

τ
f(τ)dτ = stYt.

Dividing by Yt on the two sides of this equation yields

st = (α+ pt)

∫
τ≤Qt

1

τ
f(τ)dτ, (B.19)

where pt = Pt/Yt. Using Ct = (1− st)Yt, we rewrite equation (14) as

pt
1− st

= β
pt+1

1− st+1

∫
max

(
Qt+1

τ
, 1

)
f(τ)dτ . (B.20)

Therefore, the system of three difference equations (B.14), (B.19) and (B.20) determine three

sequences for st, pt, and Qt. Clearly, the steady state is a solution to this system. The following

lemma shows that it is a unique local solution.

Lemma 2 There exists a unique solution st = sb, pt = pb and Qt = Qb for all t to the system of

three equations (B.14), (B.19) and (B.20) in the neighborhood of the bubbly steady state.

Proof. Substituting (B.19) into (B.14) and (B.20), we obtain

Qt

1− (α+ pt)
∫
τ≤Qt

1
τ f (τ) dτ

=
β
∫
max

(
Qt+1

τ , 1
)
f (τ) dτ

1− (α+ pt+1)
∫
τ≤Qt+1

1
τ f (τ) dτ

α

(α+ pt)
∫
τ≤Qt

1
τ f (τ) dτ

,

pt

1− (α+ pt)
∫
τ≤Qt

1
τ f (τ) dτ

=
βpt+1

∫
max

(
Qt+1

τ , 1
)
f (τ) dτ

1− (α+ pt+1)
∫
τ≤Qt+1

1
τ f (τ) dτ

.

As before, denote J (Qt) =
∫
τ≤Qt

1
τ f (τ) dτ . Then

∫
max

(
Qt+1

τ , 1
)
f (τ) dτ = Qt+1J (Qt+1) +

1− F (Qt+1). At the bubbly steady state, the two equations above imply that

1 = β [QbJ (Qb) + 1− F (Qb)] ,

α = Qb (α+ pb)J (Qb) .
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We log-linearize these two difference equations around the bubbly steady state and obtain[
1 +

sb
1− sb

pb
α+ pb

]
p̂t +

sb
1− sb

f(Qb)

J(Qb)
Q̂t

=

[
1 +

sb
1− sb

pb
α+ pb

]
p̂t+1 +

[
β

α

α+ pb
+

sb
1− sb

f(Qb)

J(Qb)

]
Q̂t+1,

1

1− sb

pb
α+ pb

p̂t +

[
1 +

1

1− sb

f(Qb)

J(Qb)

]
Q̂t

=
sb

1− sb

pb
α+ pb

p̂t+1 +

[
β

α

α+ pb
+

sb
1− sb

f(Qb)

J(Qb)

]
Q̂t+1.

We rewrite the two equations above in the following form

Bb

[
p̂t+1

Q̂t+1

]
= Gb

[
p̂t

Q̂t

]
,

where

Bb =

[
1 + sb

1−sb

pb
α+pb

β α
α+pb

+ sb
1−sb

f(Qb)
J(Qb)

sb
1−sb

pb
α+pb

β α
α+pb

+ sb
1−sb

f(Qb)
J(Qb)

]

and

Gb =

[
1 + sb

1−sb

pb
α+pb

sb
1−sb

f(Qb)
J(Qb)

1
1−sb

pb
α+pb

1 + 1
1−sb

f(Qb)
J(Qb)

]
.

As before, we need to check the eigenvalues of the matrix G−1
b Bb. The characteristic function

of the matrix G−1
b Bb is λ

2 + bλ+ c where

b ≡ −1

d

[
β

(
α

α+ pb

)2

+
sb

1− sb

pb
α+ pb

f(Qb)

J(Qb)
+ 1 +

1

1− sb

f(Qb)

J(Qb)
+

sb
1− sb

pb
α+ pb

]
< 0,

c ≡ 1

d

[
β

α

α+ pb
+

sb
1− sb

f(Qb)

J(Qb)

]
> 0,

d ≡ 1 +
1

1− sb

f(Qb)

J(Qb)
+

sb
1− sb

pb
α+ pb

> 0.

We then prove the following two facts: (1) 0 < c < 1; (2) 1 + b+ c > 0.

(1) Claim 0 < c < 1.

Since

0 ≤ sb
1− sb

f(Qb)

J(Qb)
≤ 1

1− sb

f(Qb)

J(Qb)
,

0 < β
α

α+ pb
< 1,
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then

0 <
sb

1− sb

f(Qb)

J(Qb)
+ β

α

α+ pb

< 1 +
1

1− sb

f(Qb)

J(Qb)

< 1 +
1

1− sb

f(Qb)

J(Qb)
+

sb
1− sb

pb
α+ pb

,

which implies 0 < c < 1.

(2) Claim 1 + b+ c > 0.

We use the definition of b and c to compute

1 + b+ c =
β

d

α

α+ pb

pb
α+ pb

> 0.

Given these four facts, if the two roots (denoted by λ1 and λ2) are real numbers, they must

both be positive because 0 < λ1λ2 = c < 1 and λ1 + λ2 = −b > 0. Since 1 + b + c > 0, the two

roots must be smaller than 1, otherwise λ1λ2 > 1. If the two eigenvalues are complex numbers, it

follows from 0 < c = λ1λ2 < 1 that they must be inside the unit circle. We conclude that, in both

cases, there is a unique local solution for pt and Qt since both are nonpredetermined variables. The

solution is the bubbly steady state. We then use (B.19) to determine the solution for st, which is

also the steady state value.

Now, we compute the bubbly equilibrium welfare for any given initial non-steady-state capital

stock K0 :

Ub(K0) =
ln(1− sb)

1− β
+

α

1− αβ

[
β

1− β
ln(sb) + ln(K0)

]
. (B.21)

We then compare Uf (K0) and Ub (K0). Note that the life-time utility in (35) as a function of

the saving rate s is concave and has a maximum at s = αβ. Using (25) and δ = 1, sf = α/Rkf =

α
∫
τ≤Qf

1
τ f (τ) dτ . By assumption, sf > α. By Proposition 5, Rkb < Rkf . Thus sb = α/Rkb >

α/Rkf = sf > α > αβ. Hence, Uf (K0) > Ub (K0).

Another sufficient condition for Uf (K0) > Ub (K0) is τ ∈ [0, 1]. Under this condition,

∫
max

(
1

τ
,
1

Qf

)
f (τ) dτ > 1,

so that sb > sf = αβ
∫
max

(
1
τ ,

1
Qf

)
f (τ) dτ > αβ, where the equation for sf follows from (B.17).

Finally, we compare Uf (Kf ) and Ub (Kb). In any steady state, K = I = sKα. It follows that the

steady-state capital stock satisfies K = s1/(1−α). Using (35), we can then compute the steady-state
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welfare as

U =
1

1− β

[
ln (1− s) +

α

1− α
ln (s)

]
.

It is a concave function of s and is maximized at s = α. Since sb > sf > α, it follows that

Uf (Kf ) > Ub (Kb). Q.E.D.

Proof of Proposition 9: We conjecture that entrepreneur j’s value function takes the form,

Vt(τ jt,Kjt,Hjt, Bjt) = vt(τ jt)Kjt + pt(τ jt)Hjt −ϕt(τ jt)Bjt, where vt, pt and ϕt are functions to be

determined and satisfy

(1 + φ)Pt = β
Λt+1

Λt

∫
pt+1(τ jt+1)dj, (B.22)

1

Rft
= β

Λt+1

Λt

∫
ϕt+1(τ jt+1)dj. (B.23)

Denote Qt = βΛt+1

Λt

∫
vt+1(τ jt+1)dj as Tobin’s marginal Q. Given the preceding conjecture, we can

rewrite the Bellman equation as

vt(τ jt)Kjt + pt(τ jt)Hjt − ϕt(τ jt)Bjt (B.24)

= max
Ijt,Hjt+1

RktKjt −Bjt + (Qt − τ jt) Ijt +Qt(1− δ)Kjt

−Pt(Hjt+1 −Hjt)− Ptφ|Hjt+1 −Hjt|+ (1 + φ)PtHjt+1,

subject to (4), (5), (7) and (8). Note that terms related to Bjt+1 are canceled out in the Bellman

equation. We have also ignored constraint (6) temporarily. We can easily check that this constraint

is satisfied in equilibrium.

We first consider a low-τ entrepreneur with τ jt ≤ Qt. This entrepreneur would like to invest as

much as possible until (4) and (5) bind. Thus,

τ jtIjt = RktKjt +
Bjt+1

Rft
−Bjt − Pt (Hjt+1 −Hjt)− φPt |Hjt+1 −Hjt| ,

and
Bjt+1

Rft
= θPtHjt+1.

Substituting this investment rule into the preceding Bellman equation yields

vt(τ jt)Kjt + pt(τ jt)Hjt − ϕt(τ jt)Bjt (B.25)

= max
Hjt+1≥0

RktKjt −Bjt − Pt(Hjt+1 −Hjt)− Ptφ|Hjt+1 −Hjt|+Qt(1− δ)Kjt

+

(
Qt

τ jt
− 1

)
[RktKjt −Bjt + θPtHjt+1 − Pt(Hjt+1 −Hjt)− Ptφ|Hjt+1 −Hjt|]

+(1 + φ)PtHjt+1,
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subject to (7).

Now consider the choice of Hjt+1. We claim that entrepreneur j will never buy houses (i.e.

Hjt+1 > Hjt) because this would imply that the marginal benefit of holding one more unit of house

is negative, i.e., −(1+ φ− θ)
(

Qt

τ jt
− 1

)
Pt < 0. It must be the case that Hjt+1 ≤ Hjt. We can then

compute the marginal benefit of holding one more unit of house as[
2φ− (1− φ− θ)

(
Qt

τ jt
− 1

)]
Pt.

This expression is positive when τ jt >
1−φ−θ
1+φ−θQt. In this case, entrepreneur j will keep buying until

Hjt+1 = Hjt. However, when τ jt <
1−φ−θ
1+φ−θQt, the marginal benefit of holding one more unit of house

is negative so that entrepreneur j prefers to sell as many houses as possible until Hjt+1 = ωHjt. In

sum, optimal house holdings are given by

Hjt+1 =

{
Hjt when 1−φ−θ

1+φ−θQt < τ jt ≤ Qt

ωHjt when τ jt ≤ 1−φ−θ
1+φ−θQt

.

Substituting the decision rule for Hjt+1 above into the Bellman equation in (B.25), we can

simplify the Bellman equation. In particular, for τ jt ≤ 1−φ−θ
1+φ−θQt, the value function satisfies

vt(τ jt)Kjt + pt(τ jt)Hjt − ϕt(τ jt)Bjt (B.26)

=
Qt

τ jt
(RktKjt −Bjt) +Qt(1− δ)Kjt

+

[
(1− φ) (1− ω) +

(
Qt

τ jt
− 1

)
[θω + (1− ω) (1− φ)] + ω (1 + φ)

]
PtHjt,

where
[
(1− φ) (1− ω) +

(
Qt

τ jt
− 1

)
(1− ω) (1− φ)

]
PtHjt is the investment financed by selling a

fraction (1− ω) of the current house holdings net of transaction tax,
(

Qt

τ jt
− 1

)
θωPtHjt is the

investment financed by borrowing using a fraction ω of the current house holdings as collateral,

and ω (1 + φ)PtHjt is the shadow value of the house.

For 1−φ−θ
1+φ−θQt < τ jt ≤ Qt, the value function satisfies

vt(τ jt)Kjt + pt(τ jt)Hjt − ϕt(τ jt)Bjt (B.27)

=
Qt

τ jt
(RktKjt −Bjt) +Qt(1 − δ)Kjt +

[(
Qt

τ jt
− 1

)
θ + (1 + φ)

]
PtHjt,

where
(

Qt

τ jt
− 1

)
θPtHjt is the investment financed by borrowing with the current house holdings

as collateral, and (1 + φ)PtHjt is the shadow value of the house.

Next, consider a high-τ entrepreneur with τ jt > Qt. In this case, investing is unprofitable so
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that Ijt = 0. The Bellman equation in (B.24) becomes

vt(τ jt)Kjt + pt(τ jt)Hjt − ϕt(τ jt)Bjt (B.28)

= max
Hjt+1≥0

RktKjt −Bjt − Pt(Hjt+1 −Hjt)− Ptφ|Hjt+1 −Hjt|
+Qt(1− δ)Kjt + (1 + φ)PtHjt+1,

subject to (7). If Hjt+1 ≤ Hjt, then the marginal benefit of holding one more unit of house

is 2φPt > 0. In this case, the entrepreneur will increase house holdings until Hjt+1 = Hjt. If

Hjt+1 ≥ Hjt, then the terms related to Hjt+1 are canceled out in the preceding Bellman equation.

This means that the entrepreneur is indifferent among any feasible choices of Hjt+1 ≥ Hjt. We can

then rewrite (B.28) as

vt(τ jt)Kjt + pt(τ jt)Hjt − ϕt(τ jt)Bjt = RktKjt + (1 + φ)PtHjt −Bjt +Qt(1− δ)Kjt. (B.29)

Matching coefficients of Kjt, Hjt and Bjt on the two sides of equations (B.26), (B.27), and

(B.29), respectively, we can derive expressions for vt(τ jt), pt(τ jt), and ϕt(τ jt). Substituting these

expressions into (B.22), (B.23) and using the definition of Qt, we obtain equations (41), (15), and

(16) after some manipulation.

Using a law of large numbers, we compute aggregate investment as

It =

∫
τ jt≤ 1−φ−θ

1+φ−θ
Qt

1

τ jt

[
RktKjt −Bjt + [θω + (1− ω) (1− φ)]PtHjt

]
dj

+

∫
1−φ−θ
1+φ−θ

Qt<τ jt≤Qt

1

τ jt

[
RktKjt −Bjt + θPtHjt

]
dj

=

∫
τ jt≤ 1−φ−θ

1+φ−θ
Qt

1

τ jt
dj

[
Rkt

∫
Kjtdj + [θω + (1− ω) (1− φ)]Pt

∫
Hjtdj −

∫
Bjtdj

]

+

∫
1−φ−θ
1+φ−θ

Qt<τ jt≤Qt

1

τ jt
dj

[
Rkt

∫
Kjtdj + θPt

∫
Hjtdj −

∫
Bjtdj

]

= RktKt

∫
τ≤Qt

1

τ
f (τ) dτ

+PtHt

[
[ωθ + (1− ω) (1− φ)]

∫
τ≤ 1−φ−θ

1+φ−θ
Qt

1

τ
f (τ) dτ + θ

∫
1−φ−θ
1+φ−θ

Qt<τ≤Qt

1

τ
f (τ) dτ

]
.

We can also derive equations (21), (22), (23) and (24) as before. It is known from the literature

that the transversality conditions are part of the necessary and sufficient conditions for optimality

in infinite-horizon problems. Q.E.D.
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C Endogenous Housing Supply

Following Poterba (1991) and He, Wright, and Zhu (2013), we introduce endogenous housing supply.

Suppose that the cost function of producing new houses Ht+1 − Ht is given by c (Ht+1 −Ht) ,

where c′ > 0, c′′ > 0, and c′ (0) > 0. Profit maximization gives the housing supply function

Pt = c′ (Ht+1 −Ht) . Suppose that housing suppliers also belong to the extended family and hand

over their profits to the family. If the housing price is zero, no new house is produced. Aggregating

the investment equation in Proposition 1, we can rewrite equation (20) as

It = [RktKt + (1− ω + θω)PtHt]

∫
τ≤Qt

1

τ
f(τ)dτ . (C.1)

In the bubbleless equilibrium, Pt = 0 for all t. No new houses are produced and the solution is the

same as in the baseline model. When there is a housing bubble, the housing supply equation gives

the steady-state housing price P = c′ (0) . We then use equation (C.1) to determine the steady-state

housing stock H > 0. All the existence conditions and policy analysis in the main text still apply

to this extension.
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Figure 1: Real housing price indexes, price-income ratios, and price-rental ratios. See Appendix A
for the data description.
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Figure 2: Transition paths of life-time utility levels. Parameter values are given by α = 0.3,
β = 0.99, δ = 0.025, ω = 0.2, θ = 0.75, and η = 5.7.
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