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ABSTRACT: ZnO semiconductor oxides are versatile functional materials that are
used in photoelectronics, catalysis, sensing, etc. The Zn+−O− surface electronic states
of semiconductor oxides were formed on the ZnO surface by Zn 4s and O 2p orbital
coupling with the diboron compound’s B 2p orbitals. The formation of spin-coupled
surface states was based on the spin−orbit interaction on the interface, which has not
been reported before. This shows that the semiconductor oxide’s spin surface states can
be modulated by regulating surface orbital energy. The Zn+−O− surface electronic
states were confirmed by electron spin resonance results, which may help in expanding
the fundamental research on spintronics modulation and quantum transport.

■ INTRODUCTION

ZnO are key semiconductor oxide materials for widespread
applications in optoelectronic devices,1,2 piezoelectronic
devices,3 catalysis,4 sensing,5 etc. Surface engineering of zinc
oxide has been studied for decades.6 Surface disorder
treatment7,8 and defect engineering9 are basically surface
state engineering methods. The organic molecule modification
method has also been developed to modulate the surface states
and the charge transfer method to adjust electronic structures
and band structures.6,10 According to a previous study, the
orbitals on the surface of the nanoparticles are distinct from
that of bulk and should be sensitive to surface modification,
which can induce unique surface states.11 Surface spin
orbitronics is an important issue and is mostly studied in
transition metal surfaces, topological insulators, and two-
dimensional materials,12 but there exists no similar reference in
semiconductor oxide systems. Zn+(3d104s1) systems possess a
special electronic structure that has been reported and studied
in ZnO-related chemistry.13 Monovalent zinc ions have been
prepared under extremely harsh physical conditions, such as γ-
irradiation,14 electron impact ionization,15 glow discharge,16

and laser vaporization.17 In 2004, the Carmona group reported
a landmark discovery of the dimetallic sandwich compound

decamethyldizincocene (Zn2(η5-C5Me5)2), containing a cen-
tral subvalent Zn−Zn bond with both Zn atoms formally in the
+1 oxidation state.18 Chen’s group recently reported the first
example of mononuclear univalent Zn+ in solid materials of
zeolite.19,20

Organodiboron compounds represent a group of stable and
highly versatile reagents that are extremely useful in organic
synthesis.21 Despite their widespread use in synthetic
chemistry, these diboron(4) species have not been used to
modify inorganic materials. We find that surface modification
of ZnO nanoparticles with diboron compounds can induce
surface Zn+−O− dual spin states. Based on the experimental
characterization as well as the reference that modulate the
magnetic spin of SrRuO3 by tuning the oxygen coordination
environment,22 we surmise that the spin surface states
originated from surface orbital hybridization accompanied by
electron redistribution induced by modulation of the oxygen
coordination environment. To the best of our knowledge, there
is no similar report on forming these dual spin states. A
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conceptually new method for the facile generation of abundant
surface Zn+−O− surface states on ZnO nanoparticles was
developed under mild conditions (<80 °C) by means of
diboron(4) reagents. In this process, the intimate interaction of
the diboron(4) reagent’s B center with the surface bridging O2c
of ZnO facilitates the adsorption of the organodiboron
reagents onto the ZnO nanoparticles, which leads to
spontaneous electron transfer, resulting in Zn+−O− dual-spin
surface states (Figure 1b−d). Notably, this process exhibits a
facile method to modulate ZnO’s surface states by introducing
dual-spin electrons coupled to surface orbitals.
According to the literature, coordination changes in surface

oxygen sites can induce electron behaviors like magnetism.22

We posited that electrophilic organic adsorbates with an
appropriate reduction potential might favorably interact with
the surface O2c sites. Importantly, this binding changed the
coordination behavior of surface O2c and affected the surface
states. We were particularly interested in the use of organic
diboron(4) reagents due to their unique Lewis acidity and
reducing ability (vide supra). Previous work in the area of
synthetic organic chemistry showed that upon binding to a
Lewis basic oxygen atom, these organic diboron(4) species
could function as single electron reducing agents, thus allowing
various important transformations.23−29 Based on these
reasons, we envisioned that the coordination of such
diboron(4) compounds with the surface oxygen atom in
metal oxide materials may lead to the formation of surface
diboron−oxygen Lewis pairs, which may induce single electron
transfer from the ipso-O2c site to the adjacent Zn site.
Furthermore, the interaction of diboron(4) species with the
oxygen atom may stabilize the resulting low valent Zn−high
valent O pair (Figure 1b−d).

■ EXPERIMENTAL DETAILS
B1-ZnO−N2 sample: In a glovebox, 10, 20, or 50 mg of B1 (B2Pin2,
the molecular structure is depicted in Figure 2a) was dissolved in 2

mL of dried CH3OH (Energy Chemical Co. Ltd., China). Then, 0.5 g
of ZnO nanoparticles (30 nm, Shanghai Macklin Biochemical Co.
Ltd) were dispersed in B1 solution and the mixture was stirred at
room temperature (∼30 °C) overnight. After evaporation of the
solvent under vacuum at room temperature for 2 h, a blue powder of
the B1-ZnO−N2 sample was obtained. This sample was sensitive to
air and should be stored in an inert atmosphere.

B1-ZnO sample: In a glovebox, the above B1-ZnO−N2 sample was
heated at 80 °C under vacuum for 3 h. The redundant B1 molecules
were removed under vacuum via volatilization. After heat treatment,
the sample becomes insensitive to air.

Other B-ZnO samples were prepared with the sample procedure by
using the corresponding diboron compounds.

■ RESULTS AND DISCUSSION

The diboron(4) compound could be uniformly dispersed onto
the ZnO nanoparticles in a diboron(4)-soluble solvent, such as
methanol or ether. Blue samples were obtained after solvent
evaporation and heating at 80 °C under vacuum for 3 h. These
blue samples are tagged as B-ZnO. They can be stored outside
of a glovebox for at least 6 months while retaining the blue
color. This color change only occurs with diboron(4)
compounds. Monoboron compounds, such as methyl borate,
are unable to sensitize ZnO with no color change when mixed
with ZnO. We investigated the structures and properties of
these diboron(4)-sensitized ZnO nanoparticles with UV−
visible spectroscopy, X-ray diffraction (XRD), X-ray photo-
electron spectroscopy, transmission electron microscopy
(TEM), Fourier transform infrared spectroscopy (FTIR),
and boron nuclear magnetic resonance (11B NMR). The
UV−visible absorption spectra (Figures 2b and S1) of B-ZnO
show that the sample with the diboron compound
modification exhibits enhanced visible light absorption (wave-
length >400 nm). The blue color and the visible light
absorption of the B-ZnO samples imply the formation of the
reduced state of zinc(I).30

Figure 1. (a) Structure of wurtzite ZnO. (b) Adsorption model of the organic diboron compound on the ZnO surface. (c) Surface orbital energy
modulation induced by diboron compound modification. (d) Schematic diagram of spin states induced in ZnO by the diboron molecule.
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We then performed TEM characterization to explore the
surface structure of the material. A thin organic molecule layer
(ca. 0.5−2 nm) on the surface of the material can be seen in
the TEM picture (Figure 2c). The corresponding C phase
mapping in the HADDF mode (Figure 2e) and the
corresponding Zn, C, and O elemental mapping (Figure 2f−
h) show that C phase mapping distributes over a larger area
than Zn and O phase mapping, which means a carbon-
containing layer on the surface of ZnO nanoparticles (Figure
2d). Powder X-ray diffraction analysis (Figure 2i) showed that
the commercial ZnO and diboron-compound-modified ZnO
samples can be indexed to wurtzite lattice nanoparticles. There
were no new peaks after modification, which indicates no
changes in the crystal structure upon adsorption. The X-ray
photoelectron spectroscopy showed that the O 1s and Zn 2p
binding energies of B1-ZnO are lower than those of the

pristine ZnO sample. The valence band of B1-ZnO also shifted
to a lower energy, which means that the valence band electron
was much closer to the Fermi level energy, and the electron
may be more likely to jump to the conduction band (Figure
S2).
ZnO shows increased visible light absorption based on the

surface interaction with the diboron compound. To gain a
better understanding of the adsorption process, in situ FTIR
analysis was used to track the surface bonding behavior. Figure
2j shows the in situ ATR-FTIR spectra along a 60 min course
of the B4 molecule interaction with ZnO nanoparticles. The
magnification of vibration at 1600−900 cm−1 shows the
fingerprint of the B4 molecule when interacting with ZnO. For
comparison, IR signals of the free B4 molecule were found to
agree well with simulations using the Gaussian09 software
(Figure S4). The calculated results suggest a B−B bond

Figure 2. (a) Four commercially available diboron(4) compounds used in this study: B2Pin2 (bis(pinacolato)diboron), B2(OH)4
(tetrahydroxydiborane), B2Cat2 (bis(catecholato)diboron), and B2(NMe2)4 (tetrakis(dimethylamino)diboron). (b) UV−visible spectral
absorbance of the white ZnO and B-ZnO samples. (c) High-resolution transmission electron microscopy photo of the B1-ZnO sample (The
red dotted curve shows the interface of the surface molecule, whereas the white arrow shows the organic molecule layer). (d) High-angle annular
dark-field (HADDF) image of the B1-ZnO sample. (e) Carbon mapping image in the HADDF mode. (f) Zn mapping image of the B1-ZnO
sample. (g) C mapping image of the B1-ZnO sample. (h) O mapping image of the B1-ZnO sample. (i) X-ray diffraction (XRD) spectra of pristine
ZnO and four B-ZnO samples. (j) In situ attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectrum of B4 on
ZnO over 60 min at room temperature with a B4 molecule for comparison (in red).
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stretching vibration peak at ca. 1000 cm−1, where the intensity
is zero. This conforms to the fact that B4 is a C2 symmetric
molecule. The symmetry may be lost when B4 was adsorbed
on ZnO, resulting in the appearance of the corresponding B−B
bond vibration signal. Indeed, new vibrations at around 1268
and 1028 cm−1 appear, which can be indexed to the B−B bond
vibration. The B−B bond vibration was silent in the free B4
molecule, which suggests that B4 interacts with the ZnO
nanoparticle through the B−B moiety. ATR-FTIR spectra of
other B-ZnO samples all show an extra absorption band
around 1020 cm−1 compared to the free diboron molecule,
which was indexed to the asymmetric sp2−sp3 B−B bond
vibration (Figure S5). On the other hand, most typical pure
diboron(4) compound absorption peaks have very small
changes in the wavenumber in the modified samples, which
means that the main chemical structure of the molecule
remains unchanged.
Then, the surface electronic states and the diboron

molecule’s structure were characterized by electron spin
resonance, NMR, and X-ray absorption fine structure
(XAFS) (Figure 3). The electron paramagnetic resonance
(EPR) spectrum of the B1-ZnO sample showed a strong
singlet line centered on a g value of 1.960 at 2 K (Figure 3a).
Some g > 2.0 signals were also observed, which could be
indexed to the radical state of the organic molecule. The
observed g values were characteristic of a paramagnetic Zn+

center as exemplified in a few reports such as ZnO synthesized
by evaporation (g = 1.96),31 heat treated ZnO (g = 1.955),32

defect-rich ultrathin ZnAl-LDH (g = 1.99),33 and Zn+-doped
ZSM-5 obtained by molecular sieving (g = 1.99).34

Furthermore, the solid-state boron nuclear magnetic
resonance (11B NMR) can be used to elucidate the binding
details of the diboron(4) adsorbed on ZnO (Figure 3e−h).
The peaks around 20−40 ppm for the free diboron(4)
compounds were assigned to the two identical symmetric
boron atoms in the pure B1−B4 molecule (B1: 24.3, B2: 22.2,
B3: 23.0, and B4: 36.5 ppm). In the adsorption samples, the
bonding on the boron atom will cause the molecule to lose its
symmetry resulting in two distinct chemical environments

around the two boron atoms. Thus, a chemical shift was
observed at 4.4 ppm for B1-ZnO in 11B NMR, which was
presumably responsible for the complexation mode (B2: 1.63,
B3: 7.5, and B4: 1.6 ppm). This new peak appeared in the very
upfield region compared to that for the free B1, indicating a
change in the coordination on the boron atom. Mechanisti-
cally, tetracoordinating boron has a higher electron density
than the tricoordinating species due to its formal negative
charge, which results in a chemical shift upfield in the NMR
spectrum.35 Moreover, Marder and co-workers reported a N-
heterocyclic carbene-B1 adduct with a 0.34 ppm chemical shift,
which they assigned to the tetracoordinating boron.36 The
peak close to 0 ppm in the present case should be attributed to
one of the boron atoms in the diboron(4) molecule
coordinating with the bridged oxygen or the hydroxyl group
on the ZnO surface.
X-ray absorption fine structure (XAFS) spectra were used to

investigate the surface complexation. The X-ray absorption
near-edge structure (XANES) spectra of the Zn K-edge
(Figure 3i) showed that B-ZnO and ZnO have little difference,
indicating that the diboron(4) compounds only interacted with
the surface ZnO layer. The introduction of the diboron
compound did not influence the bulk properties of the ZnO
substrate, which was in accordance with the Fourier-trans-
formed (FT) k2-weighted extended X-ray absorption fine
structure spectra in Figure S6. The XANES spectra of the O K-
edge were measured in the FEY mode, which provided
information about the surface O atoms.37 We compared ZnO
with B4-ZnO to exclude the influence of the O atoms in the
diboron compounds. The absorption around 537.6 eV could
be ascribed to the hybridization of the Zn 4p and O 2p
orbitals.38,39 The negative shift (−0.4 eV) of the absorption
peak to 537.2 eV showed that the surface O atom shifted to a
lower valance state (Figure 3j), due to the formation of a B−O
coordination bond that led to the formation of a lower valence
state of the Zn+ species.
Density functional theory calculations were further used to

study the adsorption of the diboron molecule on the ZnO
nanoparticle surface. This study focuses on the ZnO {110}

Figure 3. (a−d) EPR spectra of four B-ZnO samples at 2 K. The inset in (b) shows the magnification of the green rectangular areas with g values of
2.2−1.99. (e−h) Solid-state boron nuclear magnetic resonance spectra of B1−B4 and four B-ZnO samples. (i) Zn K-edge and (j) O K-edge TEY
spectra of B1-ZnO and ZnO.
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surface, which is nonpolar and contributes up to 80% of the
ZnO total surface area.40 The optimized geometry of the B1
adsorption on the ZnO surface is shown in Figure 4a. The B1
molecule was tightly bound with the surface O2c atom through
the B−O coordination bond. The charge density difference
plots in Figure 4b showed the charge redistribution around the
adsorption site of the ZnO {110} surface mainly on the p
orbital of O atoms and s orbital of surface Zn atoms, and it also
exhibited electron redistribution in the organic molecule. This
charge redistribution could result in the formation of a Zn+−
O− pair. Next, the projected density of states (PDOS) of the
ZnO surface with the adsorption of the B1 molecule is shown
in Figure 4c. As a comparison, the PDOS of the pristine ZnO
{110} surface is shown in Figure 4d. Some intermediate states
just below the Fermi level appeared upon the adsorption of the
B1 molecule. What is more, O 2p states in the B1-ZnO model
showed a density of states of 199 eV−1 at −1.4 eV, whereas in
pristine ZnO, the relative density was 204 eV−1 at −1.9 eV, Zn
4s states at 1 eV was 1.3 eV−1 in the model of the pristine ZnO
{110} surface, and it was 1.4 eV−1 at around 0.66 eV in the B1-
ZnO model. It could be concluded that O 2p states were
reduced but Zn 4s states were increased in the B1-ZnO model,
and the band gap was shrinked. The circumstance showed that
the surface adsorption of the B1 molecule induces electron
redistribution so that some states were moved from O 2p to Zn
4s, which is consistent with the formation of the Zn+−O− pair.
The adsorption of B2, B3, and B4 molecules on the ZnO
{110} surface was also analyzed (Figure S8). The PDOS plots
(Figure S9) showed the presence of electron-filled Zn 4s states
within the band gap, suggesting that the adsorption of the
diboron molecule could lead to the formation of the Zn+

species on the ZnO surface. The stability of the newly formed
Zn+−O− pair was examined by calculating the adsorption
energy of an O2 molecule on the adjacent sites of the Zn+−O−

pair. The adsorption energy is generally positive (Table S1),
indicating that it is energetically unstable for the O2 molecule
to get close to the Zn+−O− center. This result demonstrated
that the organic complexation could prevent further oxidation
of the Zn+ species by the O2 molecule, thus stabilizing the
formed Zn+−O− pair in the air atmosphere.

■ CONCLUSIONS
Zn+−O− dual-spin surface states were formed by a surface
modification method. The diboron compound successfully
induced surface charge redistribution by adjusting the surface
orbital energy. Based on changing the coordination environ-
ment of O2c and the unique structure of the diboron
compound itself, new spinning surface states constituting Zn
4s, O 2p, and organic molecules’ orbitals were formed, and the
spin−orbit coupling was induced by the surface states to form
dual-spin Zn+−O− states.
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