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high-frequency prices of futures contracts with different maturities, we assess the additional power 

of the realized volatilities (RV) of nearby contracts for forecasting the RV of distant contracts. To 

achieve this, we include the lagged RV of contracts with a different maturity as additional 

forecasting variables in the HAR model (Corsi, 2009). We find that the daily RV of nearby contracts 

has more power for forecasting the daily RV of distant contracts than the lagged daily RV of the 

distant contracts. The forecasting performance also improves significantly after including the RV of 

the front contracts in the model. Conversely, the RVs of three-month contracts provide little 

additional information for forecasting the RVs of the front contracts. The results of the Granger 

causality tests support the volatility spillover effects among contracts along the crude oil forward 

curve, and the direction of the volatility spillover is only from nearby to distant maturities contracts.  
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1. Introduction 

Futures markets have two important roles in financial economics theory. First, they provide 

instruments for hedging risk, and second, they contribute to the price discovery process (Working, 

1948). Due to characteristics such as higher liquidity, greater transparency, and lower transaction 

costs, futures markets react more quickly than the underlying spot markets to new information 

(Working, 1962; Black, 1976). 

In this study, we explore the price discovery process along the forward curve of the WTI crude 

oil futures by examining the volatility spillover effects between nearby contracts and contracts with 

distant maturities. The idea of studying volatility spillover to shed light on the price discovery 

process comes from the literature. Volatility is often interpreted as a proxy for information flow (e.g. 

Chan et al., 1991). It is natural to be concerned with how information, and therefore volatility, may 

flow from one market to another. The theory of volatility spillovers based on the GARCH models, 

was first introduced and named “meteor showers” by Engle et al. (1990). Chan et al. (1991) then 

provided a detailed discussion of the need to focus on volatility spillovers as an alternative measure 

of information transmission. Thus, in this paper, we choose volatility spillover as an indicator of 

information flow and investigate the causal relationships between volatilities along the forward 

curve of crude oil futures. 

As many assets are traded based on the price of crude oil futures, it is important for financial 

market participants to understand the volatility transmission mechanism in the crude oil market to 

facilitate optimal portfolio allocation decisions. In particular, crude oil futures are a tool financial 

market participants can use to hedge against portfolio risk, and because the volatility of crude oil 

prices is a key determinant of hedging effectiveness, it is important to understand the nature of the 

volatility dynamics in the crude oil futures market. Furthermore, the strength of volatility spillover 

may also shed light on risk management strategies. 

Volatility spillovers in the crude oil futures market have been extensively examined in the 

literature. Evidence of volatility spillovers among different crude oil futures, between crude oil 

futures and other energy assets, and between the crude oil market and other financial markets has 

been widely documented. Chang et al. (2010) examined the spillover effects among the four major 
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benchmarks in the international oil market, namely West Texas Intermediate, Brent, Dubai/Oman, 

and Tapis, and presented some volatility spillover effects from Brent and WTI returns, and from 

the Brent and WTI crude oil markets to the Dubai and Tapis markets. Ewing, Malik, and Ozfidan 

(2002) examined the transmission of volatility between the oil and natural gas markets using daily 

returns data. Their findings indicate that volatility in oil returns is affected by both its own 

volatility and the volatility in natural gas returns, although the volatility in natural gas returns is 

only affected by the volatility of oil returns and not by its own volatility.  

In terms of volatility transmission between the crude oil market and other financial markets, 

Souček and Todorova (2013) investigated the volatility spillover mechanisms among the S&P 500, 

WTI crude oil, and US$/EUR futures markets by applying a multivariate version of the HAR 

model. The causality analysis in their study indicates that the S&P 500 futures and US$/EUR 

futures volatilities lead the volatility of crude oil, which can be attributed to the financial 

uncertainty emerging from the financial markets over the last decade. Also, the HAR estimation 

shows that, in the case of the S&P 500 futures, the highest parameter estimate is assigned to the 

own short-term volatility component, while in the case of crude oil and US$/EUR, the weekly and 

monthly components seem to contain the majority of the information. Nazlioglu et al. (2013) 

examined volatility transmission between oil and selected agricultural commodity prices (wheat, 

corn, soybeans, and sugar). The findings indicate no volatility spillover between oil and 

agricultural commodity markets before the food price crisis, whereas after the food price crisis, oil 

volatility transmits to the wheat, corn, and soybean markets.  

 The current literature focuses on the volatility spillover effects between crude oil futures 

and other financial assets; however, the volatility spillover effects have rarely been studied along 

the forward curve within the crude oil market. The so-called forward curves, which are formed by 

the futures or forward prices for a particular commodity for all available maturities at a given 

point in time, are an essential input to the pricing models of complex energy derivatives (see 

Pilipovic, 2007). The financial value of a multi-commodity position is a function of the forward 

curves. As the volatility of futures prices is a key determinant of hedging effectiveness, it is 

important to understand the nature of volatility dynamics along the forward curves.  
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In this paper, we examine the volatility spillover effects among crude oil futures with 

different maturities. More specifically, we study whether volatilities have spillover effects 

between the one-month and three-month contracts of crude oil futures. By describing the 

interaction of the volatilities between particular points in the same forward curve, this study may 

enable us to evaluate the relative informational roles of volatilities of near and distant maturities 

futures and their information processing ability in the crude oil futures market. 

In the broad tradition of Andersen and Bollerslev (1998), we choose realized volatility (RV) 

as the measure of volatility, and study whether RVs have a spillover effect among contracts with 

different maturities. Realized volatility calculated from high frequency data is easy to implement, 

model-free, and lends itself to relatively parsimonious forecasting models which capture the long-

memory feature of volatility.  

The methodological contributions of the present paper involve the use of high-frequency data 

and recent statistical techniques for the realized measures, and to allow these to have different 

impacts at different frequencies when constructing the RVs of contracts with different maturities. 

To achieve this, we apply the HAR model for RV analysis, taking advantage of the superposition 

of different frequencies in the model. In the HAR framework, we include RVs backed out from the 

prices of contracts with a different maturity as additional regressors. We also assess the structure 

of the volatility transmission using the Granger causality tests. The dataset used in this paper is the 

5-min price data from the light crude oil futures covering the period from January 4, 2010 to 

March 29, 2016.  

We find that the daily RVs of nearby contracts have stronger power in forecasting the daily 

RV of distant contracts, relative to the lagged daily RV of the latter, indicating that the one-month 

futures market is more informative than the three-month futures market. In fact, the RVs of the 

three-month contracts possess little additional information in forecasting the RV of the front 

contracts. The results of the Granger causality tests confirm that the RVs of nearby contracts 

contain important information when forecasting the RVs of distant contracts, even after 

controlling for the lagged RV of the latter. However, the converse is not true. The findings support 
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the volatility spillover effects among contracts along the crude oil forward curve, and the direction 

of the volatility spillover is from nearby to distant maturities contracts.  

The out-of-sample results also provide supportive evidence for the volatility spillover from 

front contracts to three-month contracts. The models using the lagged RV of front contracts beat 

the standard HAR model for three-month RV. Their stronger forecasting power comes mainly 

from the lagged daily RV of the front contracts. 

The crude oil inventory data is released every Wednesday by the U.S. Energy Information 

Administration (EIA). We have shown that the inventory announcements have a significant effect 

on both the spillover effect and the magnitude of volatility. On the announcement day, the volatility 

spillover between the front and three-month contracts becomes bi-directional, and the RVs become 

significantly larger for both front and three-month contracts.  

To check whether our findings are sensitive to the chosen model specifications, we use the 

autoregressive framework on weekly RVs as a robustness check, and the findings hold closely in 

the AR settings. 

In addition to the methodological contributions mentioned above, this study also contributes 

to the literature in the following way. Although many previous studies have explored volatility 

spillovers among different energy futures (e.g., Karali and Ramirez, 2014) or between the energy 

market and other financial markets (e.g., Wu, Guan, and Myers, 2010), volatility spillover effects 

along the forward curve of the crude oil futures have not to our knowledge been thoroughly 

examined. In this respect, our study fills this gap and sheds light on optimal portfolio allocation, 

hedging effectiveness, and risk management among futures contracts with different maturities. 

The rest of the paper is organized as follows. Section 2 introduces the notation and derivation 

of the model. Section 3 describes the dataset used in the empirical study. Section 4 reports the in-

sample estimation results of our forecasting models, while section 5 compares the out-of-sample 

performance of different forecasting models. Section 6 studies the announcement-day effect of the 

crude oil inventory data on the volatility spillover and the magnitude of the RV, section 7 provides 

some robustness checks, and section 8 concludes. We report some complementary descriptions of 

our dataset in the Appendix. 
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2. The Model 

A variety of models can be used to test for volatility spillover effects. One approach is to use 

the time series vector autoregressive (VAR) framework formalized by Diebold and Yilmaz (2009, 

2012), who model volatility spillovers using VAR models and variance decompositions, and 

construct a spillover index based on return and volatility spillovers. Badshah et al. (2013) examine 

the contemporaneous spillover effects among the implied volatility indices for stocks, gold, and 

exchange rates. As the impulse responses of the structural VAR model suggest that the responses 

to shocks originating in either gold or exchange rate volatility are seriously overestimated in 

traditional VARs, they use a multivariate GARCH model to identify the causal spillover effects 

among stock, gold, and exchange rate volatility. 

The research on volatility spillover has increased greatly with the development of the 

generalized autoregressive conditional heteroscedasticity (GARCH) model framework and its 

multivariate extensions. However, the various multivariate GARCH (MGARCH) specifications 

used by most studies use returns sampled at a daily or lower frequency, which results in much 

noisier volatility estimates than the RV based on high-frequency data.  

According to Corsi (2009), financial data show evidence of scaling and multiscaling, and 

standard GARCH and stochastic volatility models are not able to reproduce all of these features. 

The observed data contain noticeable fluctuations in the size of price changes at all time scales, 

while standard GARCH and stochastic volatility short-memory models appear as white noise 

when aggregated over longer time periods. Hence, it is important to consider the long-memory 

characteristic when modeling volatilities.  

The HAR model proposed by Corsi (2009) is able to reproduce this stylized fact of financial 

data. The model is also parsimonious and easy to estimate. Thus, we apply the HAR model to the 

RV of crude oil futures, and investigate the volatility spillover mechanisms among futures 

contracts with different maturities. The most common HAR model specification considers 
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volatility as a linear function of daily (d), average weekly (w), and monthly (m) RVs. Based on the 

basic idea of the HAR model, we derive our regression models as shown below. 

Assume that M+1 evenly spaced intra-period observations for day t are available on the log 

price . The continuously compounded intraday returns are 

   (1) 

where T is the number of observation days in the sample. The RV for day t is given by  

   (2) 

Following Corsi (2009), we also consider the RV viewed over different time horizons longer 
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account possible unidirectional or bidirectional volatility spillovers between nearby futures and 

distant maturity futures.  

Following such manners, our modified HAR models are 
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where 
 
is the daily forecasting error. When a variable is not included in the specific 

regression,  or  is imposed.  
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from Tick Data Inc. 

Our work is based on the advances in model-free volatility measurements using high-frequency 

data (see for example Nielsen and Shephard, 2007). We compute the daily RV measure using the 

intraday data, and aggregate the daily RV at weekly and monthly scales to have comparable RV 

measures over different horizons. 

Table 1 provides the summary statistics for the unconditional distribution of the daily RVs of 

contracts with maturities. In particular, for each RV series, we report the sample mean, median, 

standard deviation, skewness, kurtosis, and the p-value of the Jarque-Bera test for normality. The 

distributions of the RVs are skewed to the right and leptokurtic relative to the normal distribution, 

as indicated in the fifth and sixth rows in Table 1. The Jarque-Bera statistic rejects the null 

hypothesis of a Gaussian distribution for each RV series at the 1% significance level. 

Table 1 RV summary statistics 

 1-month contract 2-month contract 3-month contract 

Mean 0.013 0.013 0.013 

Median 0.012 0.011 0.012 

Std. dev. 0.007 0.006 0.006 

Skewness 1.564 1.508 1.626 

Kurtosis 6.359 6.178 7.213 

JB stat. 0.001 0.001 0.001 

Obs. 1594 1594 1594 

Notes. This table reports the descriptive statistics for the realized volatilities of contracts with 

different maturities. Specifically, for each RV series, we report the sample mean, median, standard 

deviation, skewness, kurtosis, and the p-value of the Jarque-Bera test for normality. The sample 

covers the period from January 4, 2010 to March 29, 2016. The last row reports the number of 

trading days. 

We also use this dataset to generate the out-of-sample forecast. A rolling window method is 

employed to obtain the forecast series. Specifically, we use an initial window consisting of 450 daily 

observations to estimate the first set of coefficients, and obtain the first out-of-sample one-step 

ahead forecast. Thereafter, the estimating sample rolls by adding a new observation and dropping 

the first observation in the previous window. The results are reported in section 5. 

4. In-Sample Estimation  
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Following the recent literature on RV, we can consider all of the terms in equations (7) and (8) 

as observed and then estimate their parameters by applying linear regression. The standard OLS 

regression estimators are consistent and normally distributed. To account for the possible presence 

of serial correlation and heteroscedasticity in the data, we use the Newey-West covariance 

correction. We also estimate the logarithmic HAR models in equations (9) and (10), and the results 

are reported for comparison. 

Table 2 shows the estimation results for the HAR-RV model on the RVs of three-month crude 

oil futures contracts. We report the coefficient estimates, the t-statistics based on standard errors 

computed after the Newey-West adjustment for the serial correlation of order 20, and the adjusted 

R2. Panel A reports the results for models using the RV levels, and panel B reports the results for 

the logarithmic settings. 

In panel A, the result of the standard HAR model is reported in column 1, which is similar to 

that of previous studies for other assets (see for example Corsi, 2009). Next, the one-month daily 

RVs are added to the information set at time t in the standard HAR regression (column 2). When the 

three-month monthly, weekly, and daily RVs are included together with the daily RVs of front 

contracts, the three-month daily RV coefficient becomes insignificant, and the daily RV of front 

contracts becomes the most significant regressor in both the economic and statistical sense. 

Furthermore, the adjusted R2 improves when using the one-month daily RV as an additional 

regressor. In column 3, when the three-month daily, weekly, and monthly RVs are included with 

those of front contracts, both the three-month daily and weekly RVs lose their forecasting power; 

however, the daily RV of front contracts still contains important forecasting information. The results 

shown in panel B are very similar to those of panel A, and the logarithmic models are superior in 

model fitness, as indicated by the larger adjusted R2 s. 

Table 2 provides strong evidence that the RVs of the nearby contracts contain additional 

information when forecasting the RVs of distant maturity contracts. In fact, the results in Table 3 

indicate that the RVs of distant maturity contracts possess little additional information when 

forecasting the RVs of nearby contracts.  

Specifically, Table 3 shows the results for the augmented HAR-RV model for one-month crude 
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oil futures. When adding three-month daily, weekly, and monthly RV to the standard HAR model 

for front-contract RVs as additional regressors, neither of the coefficients of the three-month RV 

shows any significance (columns 2 and 3). As expected, the magnitude and significance of all of the 

coefficients of the one-month RV are hardly affected. Furthermore, the adjusted R2 of the above two 

columns are almost unchanged compared with that of the standard HAR model for front-contract 

RV (column 1). The findings hold closely in panel B. 

Table 2 HAR-RV estimation for three-month contracts 

 
 

  
 

 (1) (2) (3)   (4) (5) (6) 

C 0.001 

(3.102) 

0.001 

(4.443) 

0.001 

(4.105) 

 C -0.228 
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(-4.182) 

 
0.260 

(4.439) 

-0.010 

(-0.258) 

0.028 

(0.887) 

 
 

0.232 

(6.421) 

0.003 

(0.063) 

0.063 

(1.451) 

 
0.400 

(7.513) 

0.344 

(5.758) 

0.149 

(1.148) 

 
 

0.364 

(5.266) 

0.345 

(4.842) 

0.134 

(1.196) 

 
0.277 

(4.645) 

0.218 

(4.142) 

0.345 

(2.229) 

 
 

0.358 

(5.249) 

0.310 

(5.641) 

0.157 

(1.378) 

 
 0.348 

(7.398) 

0.298 

(6.318) 

 
 

 0.282 

(7.199) 

0.182 

(4.727) 

 
  0.219 

(1.766) 

 
 

  0.281 

(2.622) 

 
  -0.141 

(-0.962) 

 
 

  0.107 

(0.910) 
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Notes. This table reports the in-sample estimation results of the HAR-RV model for three-month 

futures data. Panel A reports the results for models using the level of realized volatilities, and panel 

B is for the logarithmic settings. The sample covers the period from January 2010 to March 2016, 

including 1594 daily observations. The t-statistics reported in parentheses are based on the standard 

errors computed after the Newey-West adjustment for the serial correlation of order 20. The last 

row of the table reports the adjusted R2. 

Table 3 HAR-RV estimation for one-month contracts 
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Notes. This table reports the in-sample estimation results of the HAR-RV model for the front 

contracts of crude oil futures. Panel A reports the results for models using the level of realized 

volatilities, and panel B is for the logarithmic settings. The sample covers the period from January 

2010 to March 2016, including 1594 daily observations. The t-statistics reported in parentheses are 

based on the standard errors computed after the Newey-West adjustment for the serial correlation 

of order 20. The last row of the table reports the adjusted R2. 

To formally test the direction of the volatility spillover effects, we apply the Granger 

causality tests to test for causality between the RVs of nearby and distant maturity contracts. The 

results are presented in Table 4. Panel A shows whether the RVs of front contracts cause the RVs 

of three-month contracts, and panel B shows the converse. Specifically, Table 4 reports the F-

statistics for the joint significance tests of the coefficients of daily, weekly, and monthly RV in the 

first column, based on the estimated model (7) for panel A and (8) for panel B. 

In panel A, the Granger causality tests reject the null hypothesis of no causality from one-

month to three-month RV at the 1% level for both specifications. However, as shown in panel B, 

the test for the null hypothesis of no causality from the three-month to one-month RV cannot be 

rejected for any specification. Hence, we can conclude that there is a unidirectional Granger 

causality running from the one-month to the three-month RV. The results of the Granger causality 
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tests confirm that the RVs of nearby contracts contain additional information when forecasting the 

RVs of distant maturity contracts, whereas the converse is not true. 

Table 4 Granger causality tests 

Panel A 
 

 
 

 
20.423 

(0.000) 
 

23.674 

(0.000) 

Panel B 
 

 
 

 
0.123 

(0.947) 
 

1.125 

(0.338) 

Notes. This table shows the results of the Granger causality tests between the RVs of front 

contracts and three-month contracts. Specifically, the first column reports the F-statistics for the 

joint significance tests of the coefficients of daily, weekly, and monthly RV based on the 

estimated model (7) for panel A and (8) for panel B. The p-values based on the F-distribution are 

reported in parentheses. 

The findings so far show that the daily RVs backed out from the prices of nearby contracts 

contains incremental information in forecasting the subsequent daily RV of distant maturity 

contracts, relative to the RV of the distant maturity contracts. When added to the standard HAR 

model, the daily RV of nearby contracts completely subsumes the information content of the daily 

RV of the distant maturity contracts. The adjusted R2 also improves markedly. On the contrary, the 

RV of distant maturity contracts possesses little additional information when forecasting the RV of 

nearby contracts. The results of the Granger causality tests confirm that the RVs of nearby 

contracts contain additional information when forecasting the RVs of distant maturity contracts, 

but that the converse is not true. The findings support the volatility spillover effects among 

contracts with different maturities, and the direction of the volatility spillover is from nearby to 

distant maturity contracts.  

5.  Out-of-Sample Evaluation 

 To further explore the gain in forecast accuracy using our forecasting model which considers 
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the volatility spillover effect along the crude oil forward curve, we compare the out-of-sample 

performance of different predictive models. A rolling window method is used to obtain the 

forecast series. Specifically, we use an initial window consisting of 450 daily observations to 

estimate the first set of coefficients and obtain the first out-of-sample forecast value. Thereafter, 

the estimating sample rolls by adding a new observation and dropping the first observation in the 

previous window. The forecasting models we use for comparison are listed below. 

  (11) 
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  (14) 
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The root mean squared errors (RMSE) and mean absolute errors (MAE) are used as evaluation 

measures and the results are reported in Table 5. Specifically, columns (1)–(3) in panel A report the 

results for models (11)–(13) and columns (4)–(6) in panel B are for models (14)–(16). The values 

reported in panels A and B are the ratios of the evaluation measures relative to columns (1) and (4), 

respectively. 

Table 5 Out-of-sample forecast results 

 Panel A  Panel B 

 (1) (2) (3)  (4) (5) (6) 

RMSE 1.0000 0.9786 0.9822  1.0000 1.0011 1.0045 

MAE 
1.0000 0.9861 0.9900  1.0000 1.0011 1.0071 

Notes. This table reports the measures to evaluate the out-of-sample forecasting performance of 

different predictive models. The evaluation measures are the root mean squared errors (RMSE) 

and the mean absolute errors (MAE). Columns (1)–(3) in panel A report the results for models 

(11)–(13) and columns (4)–(6) in panel B are for models (14)–(16). The values reported in panels 

A and B are the ratios relative to columns (1) and (4), respectively. The smallest value in each row 

is marked in bold. 
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 The results in panel A show that the RV of the front contract possesses additional information 

when forecasting the subsequent RV of three-month contracts. The ratios in columns (2) and (3) are 

all less than one. The model using the daily RV of the front contract as an additional regressor 

performs the best in forecasting the RV of three-month contracts, indicating that the daily RV of 

front contracts contributes the most to improving forecast accuracy. However, the RV of three-

month contract does not help in forecasting the RV of the front month contract, as the ratios in 

columns (5) and (6) are all larger than one. 

 

6. Announcement Day Effect 

The U.S. Energy Information Administration (EIA) releases the crude oil inventory data after 

10:30 a.m. every Wednesday. We examine the announcement effect of the inventory data on the 

direction and strength of the volatility spillover along the forward curve by adding an interaction 

term for the announcement day dummy and the previous spillover term. The forecasting models are 

as follows, where . 
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 We also consider the impact of newly released inventory data on the level of crude oil 

volatility. Announcement day dummies are added to the model as intercepts to detect whether 

volatility on the announcement day is significantly higher than on other trading days. The 

forecasting models used here are listed as follows, and again .  
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Table 6 Announcement day effects on three-month contracts 
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 (1) (2) (3) 

C 
0.001 

(4.329) 

0.001 

(3.232) 

0.001 

(3.054) 

 
0.005 

(0.140) 
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0.042 

(1.326) 
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(5.689) 

0.328 

(5.701) 
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(4.253) 

0.334 

(2.167) 
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(5.310) 

		
D×RV

d ,t
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0.132 

(5.311) 
  

Adj. R2 
0.623 0.617 0.617 

Notes. This table reports the estimated announcement-day effect of inventory data on the realized 

volatility of three-month contracts and on the volatility spillover from front to three-month contracts. 

The data sample is from January 2010 to March 2016, and includes 1594 daily observations. The t-

statistics reported in parentheses are based on the standard errors computed after the Newey-West 

correction for the serial correlation of order 20. The last line of the table reports the adjusted R2. 

Table 7 Announcement day effect on front contracts 
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Notes. This table reports the estimated inventory data announcement-day effect on the realized 

volatility of front contracts and on the volatility spillover from three-month to front contracts. The 

data sample is from January 2010 to March 2016, and includes 1594 daily observations. The t-

statistics reported in parentheses are based on the standard errors computed after Newey-West 

correction for serial correlation of order 20. The last line of the table reports the adjusted R2. 

Tables 6 and 7 report the influence of the crude oil inventory announcement on the direction 

and strength of volatility spillover along the forward curve and on the magnitude of the RV. The RV 

on the announcement day, for both front and three-month contracts, is higher than on other trading 

days, as indicated by the positive and significant intercept dummies in columns (2) and (3) in both 

tables. More importantly, the volatility spillover between crude oil front and three-month contracts 

is bi-directional on the announcement day. This may be caused by the incorporation of new 

information in the released inventory data and the resulting heavier trading over contracts. 

To formally confirm the bi-directional spillover effects on the announcement day, we report 

the results of the Granger causality tests in Table 8. The Granger causality tests are based on the 

following forecasting models, where the daily, weekly, and monthly spillover terms and the 

corresponding interaction terms with the announcement day dummy are all included.  
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Table 8 Granger causality tests for volatility spillover on announcement day 
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Notes. This table shows the results of the Granger causality tests for volatility spillover on the 

announcement day. Specifically, it reports the F-statistics for the joint significance tests of the 

coefficients of daily, weekly, and monthly RV and their corresponding interaction terms with the 

announcement-day dummy. The p-values based on the F-distribution are reported in parentheses. 

 The results in Table 8 show that the null hypotheses are rejected in both directions, which 

strongly supports bi-directional volatility spillovers between crude oil front contracts and three-

month contracts on announcement days. The results indicate that the inventory announcement days 

are more information intense than other trading days. 

7. Robustness Check 

To test whether our results are sensitive to the frequency of the RV, we turn to a setting using 

weekly RV. The weekly RV is an average of the daily RVs within a week. 
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The simplest specification to test the volatility spillover effect among weekly RVs is the AR 

(1) model using the RV of contracts with a different maturity as an additional term. We use the AR 

(1) framework to test the additional information possessed by the volatilities of contracts with a 

different maturity in the previous week. We also adopt an AR (3) framework to explore the 

information contained in the previous month, by adding three lags of weekly RV of contracts with 

a different maturity. In addition to the settings using the RV levels, we also include the logarithmic 

equations for comparison. The model specifications are listed below. 
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Tables 9 and 10 report the results using AR models on the weekly RVs. The results are in 

line with those using the HAR framework to forecast the daily RVs. The first lag of the weekly RV 

of the front contracts possesses additional information in forecasting the subsequent weekly RVs 

of three-month contracts. Including the weekly RV of front contracts in the forecasting model also 

significantly improves the model fitness, as shown by the larger adjusted R-squared. The second 

and the third lags of the weekly RV of the front contracts are not significant, indicating that the 

latest information contained in the front contract is useful, but the predictive power of the RVs of 

the front contracts is not long-lasting. Again, the RV of the three-month contract possesses little 

additional forecasting power. The results for the logarithmic settings are very similar to those of 

the level equations. 
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Table 9 Spillover effects for three-month contracts using weekly RV 
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Adj. R2 
0.683 0.702 0.706 0.714  Adj. R2 0.735 0.760 0.765 0.776 

Notes. This table reports the estimation results of the spillover effects for three-month contracts using weekly RV data. Panel A reports the results for models using the 

weekly RV levels, and panel B is for the logarithmic settings. The light crude oil futures data cover the period from January 2010 to March 2016. The t-statistics 

reported in parentheses are based on the standard errors computed with the Newey-West correction for the serial correlation of order 20. The last row of the table reports 

the adjusted R2. 
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Table 10 Spillover effects for front contracts using weekly RV 
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0.747 0.747 0.763 0.761  Adj. R2 0.789 0.789 0.807 0.806 

Notes. This table reports the estimation results of the spillover effects for front contracts using the weekly RV data. Panel A reports the results for models using the 

weekly RV levels, and panel B is for the logarithmic settings. The light crude oil futures data is from January 2010 to March 2016. The t-statistics reported in parentheses 

are based on the standard errors computed with the Newey-West correction for the serial correlation of order 20. The last row of the table reports the adjusted R2. 
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8. Conclusion 

In this paper, we study the volatility spillover effect along the crude oil forward curve. Using 

the high-frequency prices of futures contracts with different maturities, we assess the additional 

power of the RV of nearby contracts for forecasting the RV of distant contracts. To achieve this, we 

include the lagged RV of contracts with a different maturity as additional forecasting variables in 

the HAR model (Corsi, 2009). 

We find that the daily RVs of nearby contracts have a stronger power for forecasting the daily 

RVs of distant contracts relative to the lagged daily RVs of the latter. Specifically, when added to 

the standard HAR model, the RV of front contracts completely subsumes the information content 

of the RV of three-month contracts, indicating that the one-month futures market is more 

informative than the three-month futures market. The forecasting performance also improves 

significantly after including the RV of the front contracts in the model. Conversely, the RVs of 

three-month contracts possess little additional information in forecasting the RVs of front 

contracts.  

The results of the Granger causality tests confirm that the RVs of nearby contracts contain 

important information when forecasting the RVs of distant contracts, even after controlling for the 

lagged RV of the latter. However, the converse is not true; in spite of the frequency of the RVs, the 

RV of distant contracts has little effect in forecasting the RV of nearby contracts. These findings 

support the volatility spillover effect among contracts along the crude oil forward curve, and the 

direction of the volatility spillover is from nearby to distant maturities contracts.  

The out-of-sample results also provide supportive evidence for the volatility spillover from 

front to three-month contracts. The models having the lagged RV of front contracts as additional 

regressors beat the standard HAR model for the three-month RV. The stronger forecasting power 

comes mainly from the lagged daily RV of the front contracts. 

The crude oil inventory data is released every Wednesday by the EIA. We have shown 

empirically that the inventory announcements have a significant announcement-day effect on both 

the spillover effect and the magnitude of volatility. On the announcement day, the volatility 
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spillover between the front and three-month contracts becomes bi-directional, and the RVs 

become significantly larger for both front and three-month contracts. 

Overall, our findings contribute to the volatility spillover literature, and shed light on the price 

discovery process of crude oil futures and information transmission among contracts with different 

maturities. We show that there is a unidirectional volatility spillover along the crude oil forward 

curve from nearby to distant contracts, indicating that the volatility of nearby contracts generally 

contains ex ante information on the volatility of distant maturities contracts. The prices of nearby 

contracts are more informative due to the higher trading volume, and thus play a leading role in the 

price discovery process. Clearly, these findings are important for risk management and other 

financial applications involving volatility forecasting.  
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Appendix 

A.1. Percentages of missing values before and after interpolation 

 Before Interpolation After Interpolation 

One-month contract 0.003% - 

Two-month contract 0.071% 0.027% 

Three-month contract 
1.251% 0.046% 

Notes. The percentages are of missing values before and after interpolation for 5-min price data. 

The dataset includes one-month, two-month, and three-month crude oil prices from January 2010 

to March 2016. The prices of the one-month crude oil contracts are not interpolated. 
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