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Abstract

This paper provides a general framework for testing instrument validity in hetero-
geneous causal effect models. We first generalize the testable implications of the in-
strument validity assumption provided by Balke and Pearl (1997), Imbens and Rubin
(1997), and Heckman and Vytlacil (2005). The generalization involves the cases where
the treatment can be multivalued (and ordered) or unordered, and there can be condi-
tioning covariates. Based on these testable implications, we propose a nonparametric
test which is proved to be asymptotically size controlled and consistent. Because of the
nonstandard nature of the problem in question, the test statistic is constructed based
on a nonsmooth map, which causes technical complications. We provide an extended
continuous mapping theorem and an extended delta method, which may be of indepen-
dent interest, to establish the asymptotic distribution of the test statistic under null. We
then extend the bootstrap method proposed by Fang and Santos (2018) to approximate
this asymptotic distribution and construct a critical value for the test. Compared to the
test proposed by Kitagawa (2015), our test can be applied in more general settings and
may achieve power improvement. Evidence that the test performs well on finite sam-
ples is provided via simulations. We revisit the empirical study of Card (1993) and use
their data to demonstrate application of the proposed test in practice. We show that a
valid instrument for a multivalued treatment may not remain valid if the treatment is
coarsened.
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test, power improvement, extended continuous mapping theorem, extended delta method
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1 Introduction

The local average treatment effect (LATE) framework, introduced by the seminal works Im-
bens and Angrist (1994) and Angrist et al. (1996), is a commonly used approach in studies
of instrumental variable (IV) models with treatment effect heterogeneity. The local quan-
tile treatment effect (LQTE) is a concept similar to LATE. While LATE shows the treatment
effect on the mean of the outcome, LQTE is more informative in regard to the effect on the

outcome distribution.!

These causal effect models rely on several strong and sometimes
controversial assumptions of IV validity: 1) The instrument should not affect the outcome
directly; 2) it should be as good as being randomly assigned; and 3) it affects the treatment
in monotone fashion. Violations of these conditions can generally lead to inconsistent treat-
ment effect estimates. Relevant surveys and discussion of this can be found in Angrist and
Pischke (2008), Angrist and Pischke (2014), Imbens (2014), Imbens and Rubin (2015),
Koenker et al. (2017), Melly and Wiithrich (2017), and Huber and Wiithrich (2018). Since
the plausibility of the analyses of such models depends on IV validity, economics research
has developed methods to examine these conditions based on testable implications.

This paper provides a general framework for testing such IV validity assumptions. We
first generalize the testable implications obtained by Balke and Pearl (1997), Imbens and
Rubin (1997), and Heckman and Vytlacil (2005) for binary treatments. The generalization
includes the cases where the treatment can be multivalued (and ordered) or unordered, and
conditioning covariates may exist.> Then based on these testable implications, we propose
a nonparametric test which can easily be applied in practice.

Kitagawa (2015) was the first paper to propose a test of IV validity in heterogeneous
causal effect models based on the testable implications in the literature. The test, construct-
ed using a bootstrap method, is for binary treatments. It was shown to be asymptotically
uniformly size controlled and consistent. Since the bootstrap critical value converges to a
number larger than the 1 — a quantile of the asymptotic distribution of the test statistic over
a large region of the null, the test could be conservative. Mourifié and Wan (2017) reformu-
lated as conditional inequalities the testable implications used in Kitagawa (2015). Then
they showed that these inequalities could be tested in the intersection bounds framework
of Chernozhukov et al. (2013) using the Stata package provided by Chernozhukov et al.
(2015). The test is also for binary treatments and could be conservative as well. It restricts

1See, for example, studies of LQTE in Abadie (2002), Ananat and Michaels (2008), Cawley and Meyerhoefer
(2012), Frolich and Melly (2013), and Eren and Ozbeklik (2014).

2Studies of LATE with binary treatments can be found in Angrist (1990), Angrist and Krueger (1991), and
Vytlacil (2002). Those with multivalued treatments can be found in Angrist and Imbens (1995), Angrist and
Krueger (1995), and Vytlacil (2006). Identification of causal effects in unordered choice (treatment) models
can be found in Heckman et al. (2006), Heckman and Vytlacil (2007), Heckman et al. (2008), and Heckman
and Pinto (2018).



the support of the outcome variables to be compact, ruling out the case where outcomes
can be unbounded. Huber and Mellace (2015) derived a testable implication for a weaker
LATE identifying condition, that is, that the potential outcomes are mean independent of
instruments, conditional on each selection type. However, the condition of potential out-
comes being mean independent of instruments is not sufficient if we are concerned with
distributional features of a complier’s potential outcomes, such as the quantile treatment
effects for compliers; see Abadie et al. (2002) for details. The focus of the present paper is
on full statistical independence of potential outcomes and instruments.

The null hypothesis for the testable implications used in Kitagawa (2015) consists of a
set of inequalities. The reason why the test proposed by Kitagawa (2015) could be conser-
vative is that they used an upper bound on the asymptotic distribution of the test statistic
under null to construct the bootstrap critical value. The upper bound is identical to the
asymptotic distribution when all the inequalities in the null are binding. In the study de-
scribed in the present paper, we solve a technical issue and establish the pointwise asymp-
totic distribution of the test statistic under null. Then we construct the critical value based
on this asymptotic distribution, rather than on an upper bound, and therefore improve the
power of the test.

A modified variance-weighted Kolmogorov—Smirnov (KS) test statistic is employed in
our test. As mentioned by Kitagawa (2015), variance-weighted KS statistics have been
widely applied in the literature on conditional moment inequalities, such as in Andrews
and Shi (2013), Armstrong (2014), Armstrong and Chan (2016), and Chetverikov (2018).
More general KS statistics can be found in the stochastic dominance testing literature, such
as in Abadie (2002), Barrett and Donald (2003), Horvath et al. (2006), Linton et al. (2010),
Barrett et al. (2014), and Donald and Hsu (2016).

There are two major complications in deriving and approximating the asymptotic dis-
tribution of the test statistic under null. First, the test statistic involves a nonsmooth (non-
differentiable) map of unknown parameters (underlying probability distributions), and the
delta method fails to work. We provide an extended continuous mapping theorem and an
extended delta method, which might be of independent interest, to overcome this difficul-
ty. By showing that the conditions of the extended delta method are satisfied under several
weak assumptions, we establish the null asymptotic distribution of the test statistic. Second,
since the null asymptotic distribution involves a nonlinear function, the standard bootstrap
method may fail to approximate this distribution consistently. Discussion of this issue can
be found in Diimbgen (1993), Andrews (2000), Hirano and Porter (2012), Hansen (2017),
Fang and Santos (2018), and Hong and Li (2018). To achieve a consistent approximation,
we extend the bootstrap approach proposed by Fang and Santos (2018)% and provide a

30ther applications of this bootstrap method can be found in Beare and Moon (2015), Beare and Fang



valid bootstrap critical value. The test is found to be asymptotically size controlled and con-

sistent. Evidence that the test performs well on finite samples is provided via simulations.
We now introduce the following notation, which will be used throughout the paper. We

let ~~ denote Hoffmann-Jgrgensen weak convergence in a metric space. For a set D, denote

the space of bounded functions on D by ¢>°(DD):
(D) ={f:D—=>R:|[fll, <oc}, where |, = SUB\f(w)!-
xe
If D is a topological space, let C' (D) denote the set of continuous functions on D:

C(D)={f:D— R: fis continuous} .

2 Setup and Testable Implications

2.1 Binary Treatment

To formally introduce the topic of interest, we first consider the heterogeneous causal effect
model of Imbens and Angrist (1994). Let Y € R be the observable outcome variable, and let
D € {0, 1} be the observable treatment variable, where D = 1 indicates that an individual
receives treatment. Let Z € {0,1} be a binary instrumental variable. Let Y;, € R be the
potential outcome variable* for D = d and Z = z, where d, z € {0,1}. Similarly, let D, be
the potential treatment variable for Z = z. The instrument validity assumption for binary
treatment and binary IV is formalized as follows.

Assumption 2.1 [V validity for binary D and binary Z:
() Instrument Exclusion: With probability 1, Yy9 = Yg1 for each d € {0,1}.
(ii) Random Assignment: The variable Z is jointly independent of (Yoo, Yo1, Y10, Y11, Do, D1).

(iii) Instrument Monotonicity: The potential treatment response indicators satisfy D1 > Dy
with probability 1.

Assumption 2.1 is from Imbens and Rubin (1997), but it does not require strict instrument

monotonicity. In this paper, we are not concerned with the strict monotonicity assumption,

which is also known as the instrument relevance assumption.”

(2017), Seo (2018), Beare and Shi (2019), and Sun and Beare (2019). A similar bootstrap approach can be
found in Hong and Li (2018).

*See Rubin (1974) and Splawa-Neyman et al. (1990) for further discussion of the potential outcomes.

>As mentioned by Kitagawa (2015), the instrument relevance assumption can be assessed by inferring the
coefficient in the first-stage regression of D onto Z.



Let (£2,.A,P) be a probability space on which all random elements are well defined. Let
Bgrm denote the Borel o-algebra on R™ for all m € N. For all Borel sets B and C, we follow
Kitagawa (2015) and define probability measures as follows:®

P (B,C)=P(Y €B,DeC|Z=1) and B (B,C)=P(Y € B,D e C|Z=0).

Under Assumption 2.1(i), we can define a potential outcome variable Y; such that Y; =
Y40 = Yg1 almost surely. Imbens and Rubin (1997) showed that for every Borel set B,

P (B, {1}) - B (B, {1}) = P(Yl € B,D; > Do)
and Fy (B,{0}) — P (B,{0}) =P (Yo € B, D1 > Dy). €3]

To see why (1) is true, we can write

P (B, {1}) =Py (B,{1})=P(Y €B,D=1Z=1)-P(Y € B,D = 1|Z =0)
=P(Y1€B,D1=1)—P(Y, € B,Dy=1)=P(Y; € B,D; =1,Dy = 0),

where the second equality follows from Assumptions 2.1(i) and 2.1(ii) and the third e-
quality follows from Assumption 2.1(iii). Similar reasoning gives the second equation in
(1). Since the probabilities in (1) are nonnegative, we obtain the testable implication of
Assumption 2.1 in Balke and Pearl (1997), Imbens and Rubin (1997), and Heckman and
Vytlacil (2005): For all B € Bg,

Py (B, {1}) - Py (B,{1}) > 0 and Py (B,{0}) — Py (B, {0}) > 0. @

To understand (2) graphically, suppose that Y is a continuous variable and that p, (y,d) is
the derivative of the function P, ((—oo,y], {d}) with respect to y for all d,z € {0,1}. The
following graphs show a case where (2) holds.

Figure 1: A special case satisfying testable implication (2)

— p1(y,1) — p1(y,0)

---po(y,1) S - - po(y,0)

(a) P, (B, {1}) > By (B, {1}) (b) Py (B, {0}) > P (B, {0})

®For simplicity of notation, we implicitly assume that (Y, D, Z) is (A, Bgs )-measurable.



The first inequality in (2) is shown in Figure 1a, where the derivative p; (y, 1) is greater
than pg (y, 1) everywhere. The second inequality in (2) is shown in Figure 1b, where the
derivative pg (y,0) is greater than p; (y,0) everywhere. Additional graphical examples can
be found in Kitagawa (2015).

2.2 Multivalued (and Ordered) Treatment

Section 2.1 discussed the case where the treatment and the instrument are both binary. In
many applications, D and Z can be multivalued. See, for example, Angrist and Imbens
(1995), where the treatment variable is the number of years of schooling completed by a
student and can take more than two values. Now suppose that D € D = {d;,ds,...} and
Z € Z={z,z,...,2K}. Welet dy.x be the maximum value of D if it exists, and d,y;, the
minimum value of D if it exists. Suppose there exist potential variables Y, for d € D and
z € Z,and D, for z € Z. Then the IV validity assumption for multivalued treatment D and
multivalued instrument Z is formalized as follows.

Assumption 2.2 [V validity for multivalued D and multivalued Z:
(D Instrument Exclusion: With probability 1, Yy,, = Yq,, = -+ = Yy, forall d € D.

(ii) Random Assignment: The variable Z is jointly independent of (Y, D), where

Y = (Yayzys s Yayons Yagers - - s Yiozger---) and D = (D, Dy, ..., D).

(iii) Instrument Monotonicity: The potential treatment response variables satisfy D., , >
D, with probability 1 forall k € {1,2,..., K —1}.

Assumption 2.2 is similar to Assumptions 1 and 2 of Angrist and Imbens (1995). Since we

allow multivalued Z, the monotonicity assumption needs to hold for each pair (D, , D, , ).

The next lemma establishes a testable implication of Assumption 2.2 when the treatment
variable has a maximum value and/or a minimum value.

Lemma 2.1 A testable implication of Assumption 2.2 is that for all k with 1 < k < K — 1, all
Borel sets B, and all C' = (—oo, c| with ¢ € R, the following hold:

P(Y € B,D = duax|Z = 21) <P (Y € B, D = duax|Z = 2311) if dinax exists
and IP)(Y €eB,D= dmin|Z = Zk) > P(Y €B,D= dmin‘Z = Zk—i—l) lfdmin exists; 3
P(DeC|Z=2z)>P(DeC|Z=241). (4)



Lemma 2.1 generalized testable implication (2) to the case where the treatment and the
instrument can both be multivalued. The testable implication (first-order stochastic dom-
inance) discussed by Angrist and Imbens (1995) for Assumption 2.2 is equivalent to (4).
Clearly, if D and Z are both binary as assumed in Section 2.1, with dy,.x = 1 and dpi, = 0,
then (3) is equivalent to (2) and (4) is implied by (3). To the best of our knowledge, (3) is
new in the literature.

2.3 Unordered Treatment

Studies of identification of causal effects in unordered choice (treatment) models can be
found in Heckman et al. (2006), Heckman and Vytlacil (2007), and Heckman et al. (2008).
Heckman and Pinto (2018) showed that the assumptions’ in the preceding literature could
be relaxed, and they defined a new monotonicity condition for the identification of causal
effects in such models. We follow Heckman and Pinto (2018) and suppose that the support
D of D is an unordered set with D ={d;,ds, ...,d;} and that the support Z of Z with Z =
{z1,..., 2K} can be unordered as well. The unordered monotonicity condition proposed by
Heckman and Pinto (2018) is as follows.

Assumption 2.3 The potential treatment response indicators satisfy the condition that for all
deDandall 2,72 € Z,1{D, =d} > 1{D, = d} almost surelyor 1 {D,, = d} < 1{D, = d}
almost surely.

It is worth noting that in Assumption 2.3, D is allowed to be a vector random elemen-
t. In the case where D, Z € {0,1}, Assumption 2.3 is equivalent to the assumption that
1{D; =1} > 1{Dg = 1} almost surely or 1 {D; =1} < 1{Dy = 1} almost surely. Accord-
ing to the context of the issue of interest, we can prespecify a set C C D x Z x Z and
assume that 1{D, =d} < 1{D, = d} almost surely for all (d, z,2") € C, which is simi-
lar to Assumption 2.1(iii). With this monotonicity condition, we introduce the IV validity
assumption for unordered treatment.

Assumption 2.4 [V validity for unordered D and unordered Z:
() Instrument Exclusion: With probability 1, Yy, = Yy, foralld € Dand all z,2' € Z.

(ii) Random Assignment: The random element Z is jointly independent of (Y, D), where

Y: (Yd1217"'7Yd12K7Yd2217"'7Yd22K7"'7YdJZI7"'7YdJZK)
and D = (D,,, D.,,...,D.,.).

) ZK

’See Heckman and Pinto (2018, pp. 2-3) for a discussion of these assumptions.



(iii) Instrument Monotonicity: The potential treatment elements satisfy the condition that
1{D, = d} < 1{D, = d} with probability 1 for all (d, z,2") € C.

Under this assumption, we can define Yy by Y; = Y, almost surely for all z, and hence

P(Y € B,D =d|Z =) = E[1{Y; € B} - 1{D., = d}]
<E[{Y;eB} 1{D,=d}]=P(Y € B,D=d|Z = z)

for all Borel sets B and all (d, z,2’) € C.

Lemma 2.2 A testable implication of Assumption 2.4 is given by
P(YeB,D=dlZ=2)<P(Y € B,D=d|Z=2z) (5)
for all Borel sets B and all (d, z, 2') € C, where C is a prespecified subset of D x Z x Z.

2.4 Conditioning Covariates

In this section, we consider the case where conditioning covariates may exist, that is,
the random assignment assumption holds conditional on some covariates. Suppose X is
a conditioning covariate vector, let X be the set of possible values of X, and let X =

{1’1,1’2, ey Z‘L}.

First, consider the case introduced in Section 2.2 where the treatment and the instru-
ment are both multivalued (and ordered). A testable implication with conditioning covari-
ates is as follows.

Lemma 2.3 A testable implication of the conditional version of Assumption 2.2 is that

P(Y € B,D = dpax|Z = 25, X = 21) <P (Y € B, D = dypax| Z = 231, X = 31) if dinax
existsand P(Y € B,D = dwin|Z = 2z, X = x;) > P(Y € B, D = dwin|Z = 2141, X = 21)
if dmin exists,and P (D € C|Z = z,, X = x;) > P(D € C|Z = 241, X = 1), (6)

forall kwithl1 <k < K-1allwithl <l< L, al B € By, and all C = (-0, c| with
ceR.

Second, consider the case introduced in Section 2.3 where the treatment and the in-
strument can both be unordered. A testable implication with conditioning covariates is as
follows.

Lemma 2.4 A testable implication of the conditional version of Assumption 2.4 is given by

P(YeBD=dZ=2X=u)<P(Y€BD=dlZ=2X=u) 7)



for all Borel sets B, all (d,z,z") € C, and all l with 1 <[ < L, where C is a prespecified subset
of Dx Z x Z.

The inequality in (7) is similar to the generalized regression monotonicity (GRM) hypoth-
esis in Hsu et al. (2019). The major difference is that Z is allowed to be unordered in

(7).

3 Test Formulation

To highlight the idea, we first introduce the test for the case where the treatment is multi-
valued (and ordered), with support D ={d;,ds,...}. The other cases will be discussed as
extensions in later sections. Also, we let Z be multivalued with support Z = {z1,...,2x}.
The test is constructed based on the testable implication given in (3) and (4). Without loss
of generality, we assume that both dy,;, and dyax exist, with dp;, = 0 and dpax = 1. In
practice, we can always normalize dp,i, and dy,.x to 0 and 1, respectively. Then (3) and (4)
are equivalent to

(-1)¢ - {P(Y € B,D=d|Z =z2,4,)—P(Y €B,D=d|Z=2)}<0
andP(D € C|Z = z41) —P(D € C|Z = 2,) <0 (8)

forall k with 1 < k < K —1, all closed intervals B in R, each d € {0,1}, and all C' = (—o0, (]
with ¢ € R. Here, (3) and (4) originally require (8) to hold for all Borel sets B. Similarly to
Lemma B.7 of Kitagawa (2015), we can show (by applying Lemma C1 of Andrews and Shi
(2013)) that (8) holding for all closed intervals B is equivalent to (8) holding for all Borel
sets B.

By definition, for all B,C € Bg and all k with 1 <k < K,P(Y € B,D € C|Z = z,) =
P(Y e B,DeC,Z=z,)/P(Z = z). We now define function spaces

QK: {1R><]R><{zk}:k:1727"-7K}7

g = {(hRXRX{Zk}? 1R><]R><{zk.+1}) k= 1727 s 7K - 1} ;
Hi = {(—l)d ‘1pyfayxr : B is a closed interval in R, d € {0, 1}} ,

Hi = {(—1)d 1px{ayxr : B is a closed, open, or half-closed interval in R, d € {0, 1}} ,

HZ - {IRXCXR O = (—OO,C],C € R}y
Ho = {lgrxoxr : C = (—00,c] or C = (—o0,¢),c € R},
H =H1 UHs, and7:[27:[1U7:[2. 9

Let P denote the set of probability measures on (R3 Bgs). We use an i.i.d. sample

9



{(Y;, D;, Z;)}?_, which is distributed according to some probability distribution @ in P,
that is, that the measure Q(G) = P((Y;, D, Z;) € G) for all G € Bgs, to construct a test
for the testable implication given in (3) and (4) (or in (8)). For every Q € P and every
measurable function v, by an abuse of notation we define

Q(v) = /de. (10)
Define, by convention (see, for example, Folland (1999, p. 45)), that
0-00=0. 11)

For each Q) € P, the closure of H in L?(Q) is equal to H (Lemma B.1). For every € P and
every (h,g) € H x G with g = (g1, g2), define

_Q(h-g2) Q(h-g1)
P9 ="00) " Q) (12

With (11), ¢¢ is always well defined. Then the null hypothesis equivalent to (8) is

Ho: sup  ¢o(hg) <0 (13)
(h,9)EHXG

if the underlying distribution of the data is . Since Q(v) is continuous on L?(Q), (13) is
equivalent to sup, g czixg 9 (h, g) < 0. The alternative hypothesis is naturally set to

Hi: sup ¢g(h,g)>0
(h,g)EHXG

Define the sample analogue of ¢¢g by

Q(h-g2) Q(h-g1)
Q(g2) Qg1

6 (h,g) =

)
where Q denotes the empirical probability measure of Q such that for every measurable
function v,

1 n
fZU Y;, D;, Z;) (14)
=1

3

and {(Y;, D;, Z;)}7_, is the i.i.d. sample distributed according to Q).
The goal of this section is to construct a test for the Hj in (13). To evaluate the ability
of the test to provide size control, we consider a “local” sequence of probability distribu-

10



tions {P,,}7°; C P under which the testable implication is true and P,, converges to some
probability measure P € P. We introduce the next two assumptions to formalize the above
settings.

Assumption 3.1 {(Y;, D;, Z;)};", is an i.i.d. data set distributed according to probability dis-
tribution P, for each n, where D; and Z; are discrete variables with support D and Z, respec-

tively.

Assumption 3.2 There is a probability measure P € P such that

2
lin <\/ﬁ {dpg/Q - dP1/2} — ;vgdPl/2> =0 (15)
for some measurable function vy, where dP}? and dP'/? denote the square roots of the densi-

ties of P, and P, respectively.

Assumptions 3.1 and 3.2 assume an i.i.d. sample whose distribution P, is allowed to change
as n increases, and to converge to some probability measure P as defined in (3.10.10) of
van der Vaart and Wellner (1996). In the local analysis of Fang and Santos (2018), they
considered the case where the value of the underlying parameter may be close to a point
at which the map involved in the test statistic is only directionally differentiable (not fully
differentiable). A similarly convergent probability sequence was introduced to show the
local size control of their test.® As will be shown later, the map involved in our test statistic
is nondifferentiable (neither fully nor directionally differentiable). We follow Fang and
Santos (2018) and assume such a convergent probability sequence to show the local size
control of our test.

Clearly, H x G C L?(P) x (L*(P) x L%*(P)). Under Assumption 3.2, define a metric pp
on L?(P) x (L?(P) x L?*(P)) by

p((h.g), (W,g) = ||h - h,HLQ(P) +1lg1 - giHL2(P) +lg2 - 9§HL2(P) (16)
for all (h,g),(h',¢') € L*(P) x (L*(P) x L*(P)) with g = (g1,92) and ¢’ = (g1,45). By

Lemma B.8, the closure of H x G in L?(P) x (L*(P) x L?(P)) under pp is equal to H x G,
where H is defined in (9). Define

K
= H (Irxrx{zy) forallQ € P, and T,, = n - H P (Ipxkx{z}) »
k=1 k=1

8See Examples 2.1 and 2.2 of Fang and Santos (2018).

11



where P, is the empirical probability measure of P, defined as in (14). Under Assumption
3.2, we mainly consider the nontrivial case where A(P) > 0. Also, for every () € P, define

Q(h*-g2) Q*(h-g2) , Q(M*-q1) Q*(h-gn)

5(h,9) = AQ) - — - 1
7qlh9) = AQ) { @ Cw | @a @@
for all (h,g) € H x G with g = (g1, ¢92), where Q™(v) = [Q(v)]™ for all m € N and all
measurable v.

Lemma 3.1 Under Assumptions 3.1 and 3.2, \/Tn(g?)pn — ¢p) ~ G for some tight’ random
element G which almost surely has a uniformly pp-continuous path, and for all (h,g) € H x G
with g = (g1, g2), the variance Var (G (h, g)) is equal to the o%(h, g) given in (17), where

op (h,g) <1/4- GO {A(P)/P (gh) +A(P) /P (g})} < 1/2- (K —1)"K7D (18)
91,92
and K is the number of elements in Z. In particular, 0% (h,g) < 1/4 for all (h,g) € H x G
when K = 2.

Lemma 3.1 provides the asymptotic distribution of v/T},(¢p, — ¢p) and its asymptotic vari-
ance, which is uniformly bounded by 1 for all K > 1. We used the quantity /7}, instead
of \/n to establish the asymptotic distribution in order to achieve a known bound for the
asymptotic variance. The bound in (18) will be useful when we construct the test statistic.
By (17), for every (h, g) € HxG with g = (g1, g2), define the sample analogue of % (h, g)

(19)

_Tn.{Pn(hzm) _Pihg)  Pu(heg) Aﬁ(h-gl)}
no | P2g)  PRe)  Piay  Pia) f

Note that for each h € H and each g; € G, if P,(g;) = 0 then P,(h-g;) = 0. By (11), 63
is well defined.
We may extend the idea of Kitagawa (2015) and construct the test statistic to be

Sup \/Tn(lsPn (h, g) (20)

(h,g)EHXG max{§7 &Pn <h7 g)}

for some positive number (trimming parameter) . Here, ¢ plays two roles: (1) Since 6p,
can be zero, £ bounds the denominator away from zero; (2) as shown in the Monte Carlo
studies of Kitagawa (2015) and the present paper, different values of £, from small (close to
0) to large (close to 1), may lead to different powers of the test for the same data generating

°In a metric space, tightness implies separability.

12



process (DGP), which could be close to 0. Kitagawa (2015) suggests that if there is no prior
knowledge available about a likely alternative, the default choice of £ could be set to 0.07
according to the simulation studies for the binary treatment and binary instrument case.
They also suggest that users report test results using different values of £. However, the
underlying distribution of the data can never be fully explored or represented by limited
simulation designs, so an “optimal” value of £ which is plausible for all possible DGPs may
not exist. If we repeat the test using the same data set but different values of £ and make
a decision based on all these results, we might encounter an issue of multiple comparisons.
As a consequence, the size of the test, or more precisely the “family-wise error rate,” may
not be controlled by the nominal significance level. With all these considerations, this paper
constructs the test statistic in a way that, loosely speaking, computes the weighted average
of the test statistics in (20) over &. If we put all the weight on one particular value of &, the
test statistic degenerates to the test statistic in (20).

Let = be a predetermined closed subset of [0, 1] such that 0 ¢ =. The set = contains all
the values of £ used for constructing the test statistic. Only one of the values greater than
(or equal to) the bound in Lemma 3.1, say 1, needs to be included in =. The test statistic in
(20) reduces to the unweighted KS statistic when ¢ = 1. Also, for every A C H x G, define
amap Sy : (> (Ex H x G) — (°(E) by

Sa (d}) (é) = Sup ¢ (gv h?.g)

(h,g)EA

for all ¢ € (> (2 x H x G). For simplicity of notation, we will write S for S;;, ;. Define
M ®(H x G) = {2(E x H x G) by

M(p)(&, h, g) = max{§, p(h,g)} (21)

forall p € £°°(H x G) and (&, h,g) € Z x H x G. Let v be a positive measure on =.

Assumption 3.3 The measure v satisfies that 0 < v(E) < oo and Syxg(ép, /M(6p,)) €
LY(v) for dllw € Q and all n.

Note that for every finite sample set,

See the discussion in Section 4 about the computational simplification of the random el-
ement Syg(¢p, /M(6p,)). Define a function Z : L*(v) — R by Z(f) = J= fdv for all
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f € LY(v). Now we set the test statistic to

VToT 0 Suxg <¢P> . (23)

M(6p,)

The measure v could be a Dirac measure centered at some fixed £ € Z. This is equivalent to
using a particular value for the trimming parameter to construct the test statistic as in (20).
Or v could be a discrete or continuous probability measure that assigns probabilities to the
elements of =. This is equivalent to using a weighted average of the test statistics in (20)
over {. By using (23), we take into account the fact that the values of ¢ may influence the
power of the test, and we can also avoid the multiple testing issue. Define

Upxg ={(h,g) € L x G : pp(h,g) =0} and ¥y;, 6 = {(h,9) € H x G : ¢p (h,g) =0}.
(24)

Since 1{q)xf01xrs —l{a}x{1}xr € H forall a € R, U3¢ and ¥, o are not empty.

Theorem 3.1 Suppose Assumptions 3.1, 3.2, and 3.3 hold. If the Hy in (13) is true with
Q = P, for all n, then

VTT 0 Sixg (‘bﬂl)wzosqfﬁxg( & ) (25)

M(6p,) M(op)
where G is as in Lemma 3.1.

Theorem 3.1 provides the pointwise asymptotic distribution of the test statistic if the Hy in
(13) is true with Q = P, for all n.'° To find this asymptotic distribution, we employed the
extended delta method provided in Appendix A. Because the map M is nondifferentiable,
the existing delta methods fail to work in establishing the weak convergence in (25). In
Appendix A, we provide an extended continuous mapping theorem and an extended delta
method elaborated by Theorems A.1 and A.2, respectively, to deal with this technical issue.
See further discussion in Remark B.3. Theorem A.1 can be viewed as an extension of
Theorem 1.11.1 of van der Vaart and Wellner (1996), and Theorem A.2 can be viewed as
an extension of Theorem 3.9.5 of van der Vaart and Wellner (1996) and of Theorem 2.1 of
Fang and Santos (2018).

In Theorem 3.1, we consider the general case, where D = {d;,ds,...}. If D is a finite
set with D = {dy,dy,...,d;}, thenZo Sy, (G/M(op)) = T o Sy, ; (G/M(op)) under
null, because it can be shown that in this special case V;;, ¢ is equal to the closure of W3, ¢

“More precisely, the weak convergence in (25) is under P,.
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in # x G under pp and G/M(op) is continuous under pp for every fixed £. We summarize
this in the following corollary.

Corollary 3.1 Under the assumptions of Theorem 3.1 with D = {d;,ds,...,d;},

\/71.OSH><Q (M?P; >> M—?IOS‘II’ng </\4G> ) (26)

(op)

where G is as in Lemma 3.1.

3.1 Bootstrap-Based Inference

It was shown that the asymptotic distribution in (26) involves a map Sy,,,, where V3¢
depends on the underlying probability measure P. Therefore, we need to find a “valid”
estimator m for ¥4, in order to consistently approximate the asymptotic distribu-
tion. If \I//H\Xg can be constructed appropriately, a natural approximation of Sy, , can be
constructed by S o By the definition of ¥4 ¢ in (24), we construct m by

‘I’/Hx\g:{( sTn} 27)

with 7, — oo and 7,/v/n — 0 as n — oo, where & is a small positive number. We suggest

op, (h,g)
M(ép,) (S0, hy 9)

using §o = 0.001 in practice. It can be shown that S;— can also be used to approximate
the asymptotic distribution in (25) when D = {d;, dg,. J.11 This is a method similar to
that which is used in Beare and Shi (2019) and Sun and Beare (2019) to estimate contact
sets in independent contexts. See Linton et al. (2010) and Lee et al. (2013) for further
discussion of estimation of contact sets. Each (h, g) is included in m if /Ty|op, (h,g)| is
no more than 7, estimated standard deviations from zero. As mentioned by Sun and Beare
(2019), we can effectively use pointwise confidence intervals to select points in this way.

3.1.1 Test Procedure

We implement the test in the following sequence of steps:

(1) Obtain the bootstrap sample {(Y;, D;, Z;)}?_, drawn independently with replacement
from the sample {(Y;, D;, Z;)}",

Hgee the equation in (B.46).
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(2) Calculate the bootstrap version of qB p, by

PB(h-g2)  DBE(h-g)
PB (g2) PB (g1)

o8 (h.g) = : (28)

let 7B =n-[[, P PB (1pyxkxz,)), and calculate the bootstrap version of 6p, by

TE  [PB(h?- OB (h-g2)* | PEB(h?-g1) PP (h-g1)?
UPn h’ g B Y 3 T A B 2 pB 3
P 92 Pn (92) Pn (gl) Pn (gl)

(29)

for all (h,g) € H x G with g = (g1, g2), where PP (v) = n=1 " v(Y;, D;, Z;) for all
measurable v.

(3) Calculate the bootstrap version of the test statistic by

oy (VIR — 9y MGE)). 50)

ZoS
H

Since the 7 o quﬁxg
bootstrap test statistic in (30) was constructed following the idea of Fang and Santos

in the asymptotic distribution in (25) is a nonlinear map, the

(2018). The nonlinearity of the map Z o Sy g Ay cause inconsistencies in the boot-
strap approximation. See Diimbgen (1993), Andrews (2000), and Fang and Santos
(2018) for details. Because of the denominator M (65 ), our approach is an extension
of that of Fang and Santos (2018). Similarly to (23), we can simplify the calculation
of (30) in practice. See Section 4 for details regarding Monte Carlo simulations.

(4) Repeat steps (1), (2), and (3) np times independently, for (say) np = 1000. Given
the nominal significance level «, calculate the bootstrap critical value ¢;_,, by

5 s
C1—q = inf {c P (IOS\IIHXg (ﬁ((ﬁpﬁi )(Z)Pn)) ‘{(YZ,DZ,Z) i 1) >1- a} :

M58
In practice, we approximate ¢;_, by computing the 1 — o quantile of the np indepen-

(3D

dently generated bootstrap statistics, with np chosen as large as is computationally
convenient.

(5) The decision rule for the test is: Reject Hy if v/ThZ o Syxg(dp, /M(6p,)) > é1—a.

Theorem 3.2 Suppose Assumptions 3.1, 3.2, and 3.3 hold.
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(D If the Hy in (13) is true with Q) = P, for all n and the CDF of T o Sy, . (Go/M(op))
is increasing and continuous at its 1 — « quantile ¢, where Gy is the asymptotic limit
given by Lemma B.16, then lim, oo P(v/T,Z 0 Syxg(dp, /M(6p,)) > ¢1-a) < . If
in addition, P, = P for all large n, then lim, .o P(v/T,Z o Syxg(dp, /M(6p,)) >

él—a) = Q.

(ii) If the Hy in (13) is false with Q = P and P, = P for all large n, then
limy, o0 P(VTHT © Sxg(dp, /M(6p,)) > é1-a) = L.

It is implied by Theorem 11.1 of Davydov et al. (1998) that in (i) of Theorem 3.2, the
CDF of 7 o Sy, , (Go/M(op)) is differentiable and has a positive derivative everywhere
except at countably many points in its support, provided that Z o Sy, . (Go/M(op)) # 0.
IfZ 0S8y, ,(Go/M(op)) = 0 at null configurations, our test statistic converges to zero in
probability and so does the critical value. Theorem 3.2 does not show clearly how the rejec-
tion rate of the test will behave asymptotically in this case. As discussed in Sun and Beare
(2019), this is a common theoretical limitation for irregular testing problems. Tests based
on the machinery of Fang and Santos (2018), and also those based on generalized moment
selection (Andrews and Soares, 2010; Andrews and Shi, 2013), may encounter this issue.
One practical resolution is to replace the bootstrap critical value ¢, with max{é;_q,n} or
¢1—a +1n, where 7 is some small positive constant. See, for instance, Donald and Hsu (2016,
p. 13). Simulation results showed that the empirical rejection rates of our test with n = 0
are lower than the nominal significance level when 7 o Sy, . (Go/M(op)) = 0 under null
configurations.

3.2 Binary Treatment: Power Improvement

In this section, we consider the special case where the treatment D and the instrument Z
are both binary. Kitagawa (2015) constructed a test for the instrument validity assumption
based on testable implication (2) when D and Z are both binary. We now compare the
results from Section 3.1 with those of Kitagawa (2015). Let 21 = 0, 2z = 1, d; = 0, and
do = 1. All the results in Section 3.1 hold in this case, and the test statistic in (23) is now
numerically equal to the one constructed by Kitagawa (2015) if we let v be a Dirac measure.
Recall that the instrument is allowed to be multivalued under the constructions in Section
312

12For the case where the treatment is binary and the instrument is multivalued, Kitagawa (2015) constructed
the test statistic by first computing the normalized differences of two empirical probability measures between
neighboring pairs of values of instruments (ordered according to the propensity score), and then taking the
maximum value of all these differences. Since these differences can be mutually correlated, it would not be
straightforward to obtain the asymptotic distribution of their test statistic and approximate its null distribution
by bootstrap.
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The testing strategy in this paper is different from that of Kitagawa (2015). To make
this point clear, we consider a simple case where P, = P for all n and the H in (13) is true
with Q = P.!3 We establish the asymptotic distribution in (26) and use it to construct the
critical value, while Kitagawa (2015) used an upper bound of the asymptotic distribution
to construct the critical value. As introduced in Section 2, we follow Kitagawa (2015) and
define probability measures

P (B,C)=P(Y €B,DeC|Z=1) and P, (B,C)=P(Y € B,D € C|Z =0)
for all B, C € Br. Now we define
Fp = {(—1)d -1pyx{ay : B is a closed interval, d € {0, 1}} ,

and write Py(f) = [ fdP, for all measurable f and each d € {0,1}. Kitagawa (2015)
showed that their critical value converged to the 1 — « quantile of the distribution
suprer, Gu(f)/(§ V ou(f)), where H = APy + (1 = NPy, A = P(Z = 1), Gy is an
H-Brownian bridge, and oy (f) is the standard deviation of Gp(f), that is, 0% (f) =
H(f?) — H*(f). Let Ff = {f € Fy : Po(f) = Pi(f)}. Then it is easy to show that H(f) =
Py(f) = Pi(f) forall f € F;. Let v be a Dirac measure centered at some &. It can be shown
that

Gulf) . . Culf)

G
) L7080, (M> (32)

sup (O’p)

rer §Vou(f) — fél]% EVonul(f

where 7 o Sy,,,, (G/M(op)) is the asymptotic distribution of the test statistic in (26) and
“L» means equivalence in distribution. The bootstrap critical value proposed in the present
paper is based on T o Sy,,, ; (G/M(op)) (equivalently, supscz+ Gu(f)/(§V or(f))), while
the one of Kitagawa (2015) is based on the upper bound sup;cr, Gu(f)/(§V ou(f)).
Specifically, Kitagawa (2015) constructed a bootstrap approximation for the Gaussian pro-
cess Gy /(€ V op), denoted by GB /(¢ v oB), and then computed the bootstrap test statistic
by sup e 7, GH(f)/ (£ V o5 (f)). We estimate F; by a subset of F;, denoted by 77, and com-
pute the bootstrap test statistic by sup feF GE(f)/(€ Vv aB(f)). Clearly, our bootstrap test
statistic is numerically smaller than that of Kitagawa (2015), and hence the critical value
is smaller. It can also be shown that our critical value converges to the 1 — . quantile of
supser: Gu(f)/(§V or(f)). Since the test statistic in (23) is numerically equivalent to that
of Kitagawa (2015), this shows that the power of the test can be improved by use of our

130ur test achieves size control under Assumption 3.2 (the convergence of a “local” sequence of probability
distributions), while the test of Kitagawa (2015) achieves uniform size control under different conditions.
Assuming a fixed P makes the comparison more explicit.
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approach. See the simulation evidence in Appendix C.

3.3 Unordered Treatment

With testable implication (5), we define the function space
H x G ={(1px{ayxr> (IRxrx{:}> Irxkx{2})) : B is a closed interval, (d, z,2") € C} . (33)

For every probability measure @) with (10), we define ¢ by ¢ (h,9) = Q (h - 92)/Q (92) —
Q(h-91)/Q (g1) for every (h,g) € H x G with ¢ = (g1, g2). Testable implication (5) is
equivalent to the Hy in

Hy: sup ¢g(h,g)<0and Hi: sup ¢q(h,g) >0
(h,9)EHXG (h,g)EHXG

if ) is the underlying probability distribution of the data. Then we can follow the test
procedure in Section 3.1.1 to conduct the test with the function space H x G defined in
(33).

3.4 Conditioning Covariates

We follow the setup in Section 2.4 and suppose X is a dx-dimensional vector random
variable. First, consider the testable implication in Lemma 2.3 with dy,;, = 0 and dpa = 1.
Define function spaces

g = {(1]R><R><{Zk}><{xl}7 1]R><R><{zk+1}><{ml}) vk = 17 27 s 7K - 17l = 17 27 v 7L} )

Hi = {(fl)d gy (ayxrxrix : B is aclosed interval, d € {0, 1}} ,

Ho = {1R><C><]R><RdX :C = (—o00,¢,ce€ R} , and H = Hq U Hs. (34)
For every probability measure () with (10), we define ¢¢g by ¢¢g (h,9) = Q (h - g2)/Q (g2) —

Q(h-g1)/Q (q1) for every (h,g) € H x G with ¢ = (g1,¢92). Testable implication (6) is
equivalent to the Hj in

Hy: sup ¢g(h,g)<0and Hy: sup ¢g(h,g) >0
(h,9)EHXG (h,g)EHXG

if @ is the underlying probability distribution of the data. Then we can follow the test
procedure in Section 3.1.1 to conduct the test with the function space H# x G defined by the
H and the G in (34).
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Next, consider the testable implication in Lemma 2.4. Define the function space

HxG= (le{d}xRdexv (IRXRX{Z}X{zl}v IRXRX{Z/}X{CQ})) : B is a closed interval,
(d,z,2')eC,l=1,2,...,L
(35)

For every probability measure () with (10), we define ¢¢g by ¢¢g (h,9) = Q (h - g2)/Q (g2) —
Q(h-91)/Q (q1) for every (h,g) € H x G with ¢ = (g1, g2). Testable implication (7) is
equivalent to the Hj in

Hy: sup ¢g(h,g)<0and Hy: sup ¢g(h,g) >0
(h,9)EHXG (h,g)EHXG
if @ is the underlying probability distribution of the data. Then we can follow the test

procedure in Section 3.1.1 to conduct the test with the function space H x G defined in
(35).

4 Simulation Evidence

We first designed Monte Carlo simulations for the case where D and Z are both multivalued
random variables such that D € {0,1,2} and Z € {0,1,2}. Simulation comparisons with
Kitagawa (2015) for the case where D and Z are both binary are given in Appendix C.
Each simulation consisted of 1000 Monte Carlo iterations and 1000 bootstrap iterations. To
expedite the simulation, we employed the warp-speed method of Giacomini et al. (2013).
As shown in (18), o3 is bounded by (1/2) - (K — 1)~5~1), where K = 3 in our setting.
In each simulation, the measure v was set to be a Dirac measure J¢ centered at one of the
following values of &£: 0.07, 0.1, 0.13, 0.16, 0.19, 0.22, 0.25, 0.28, 0.3, and 1, or to be a
probability measure ¢ that assigns equal probabilities (weights) to the values of ¢ listed
above. The nominal significance level a was set to 0.05.

When calculating the supremum of the test statistic /T, Z 0 Sy xg(dp, /M(6p,)) in (23),
we followed the numerical computation approach used by Kitagawa (2015). Specifically,
we calculated the supremum using only the closed intervals B with the values of {Y;}? ;
observed in the data as the endpoints, that is, B = [a,b] with a,b € {Y7,Ys,...,Y,}
and ¢ < b. It is not hard to show that the test statistic calculated in this way is e-
qual to that in (23). We also used such closed intervals to calculate the bootstrap test
statistic Z o Sm (VTB (qﬁﬁn —p,)/ M(&gﬂ)) in (30). From all such intervals, we found
those that satisfy the inequality in (27) and used them to calculate the supremum of
VTP (é?n — p,)/ M(63 ) for each ¢ listed above.
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4.1 Size Control and Tuning Parameter Selection

The first set of simulations was designed to investigate the size of the test and the selection
of the tuning parameter. As shown in (27), the estimate \I//H?; involves a tuning parameter
Tn, With 7, — oo and 7,,/4/n — 0 as n — oo. In practice, we need to use a particular value
of 7,, for each sample size n. For this set of simulations, we set n to 3000 and 7,, to 1, 2, 3, 4,
and oo. For 7, = o0, m = H x G and the test is conservative. We compared the rejection
rates obtained using each of these values of 7,, and decided which value would be a good
option for sample sizes close to 3000. We let U ~ Unif(0, 1), V' ~ Unif(0, 1), No ~ N(0, 1),
Ni ~ N(1,1), Ny ~ N(2,1), Z =2 x 1{U < 0.5} + 1{0.5 < U < 0.7} (P(Z = 2) = 0.5),
D, =2x 1{V <033} +1{0.33 < V < 0.66} for z = 0,1,2, D = Y¥?_,1{Z = z} x D,,
and Y = Z?z:o 1{D = d} x Ny. All the variables U, V, Ny, N1, and N, are mutually
independent. Clearly, Assumption 2.2 holds in this case with z; =0, 2o = 1, and z3 = 2.
Table 1 shows the results of the simulations. The rejection rates were influenced by the
values of 7,, and £. For each measure v, a smaller 7,, yields greater rejection rates, because
a smaller 7,, leads to a smaller critical value according to (27). For 7,, = 2, all the rejection
rates were close to those for 7, = oo (the conservative case). Similar to the pattern of
the results shown in Kitagawa (2015), some rejection rates for 7, = 2 with J¢ centered at
particular values of ¢ were slightly upwardly biased compared to the nominal size. Overall,
however, the results showed good performance of the test in terms of size control. When
sample sizes are less than or close to 3000, we suggest using 7,, = 2 in practice to achieve
good size control without a significant power loss. When the sample size increases, 7,
should be increased accordingly. It is also worth noting that when we used the measure 7,
the rejection rates could be well controlled by the nominal significance level. Thus if we
have no additional information about the choice of ¢, 7¢ can be a default choice for us.

Table 1: Rejection Rates under Hy for Multivalued D and Multivalued Z

§f01‘5§
0.07 0.1 0.13 016 019 022 025 0.28 0.3 1
1 0.079 0.060 0.047 0.068 0.056 0.058 0.061 0.061 0.061 0.061 0.054
2 0.073 0.050 0.037 0.050 0.050 0.055 0.048 0.048 0.048 0.048 0.047
3 0.073 0.048 0.037 0.050 0.050 0.049 0.048 0.048 0.048 0.048 0.047
4
oo

Tn

0.073 0.048 0.037 0.050 0.050 0.049 0.048 0.048 0.048 0.048 0.047
0.073 0.048 0.037 0.050 0.050 0.049 0.048 0.048 0.048 0.048 0.047

4.2 Rejection Rates against Fixed Alternatives

The second set of simulations was designed to investigate the power of the test. Six data
generating processes (DGPs) in total were considered, and Assumption 2.2 did not hold with
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z1 =0, z5 = 1, and z3 = 2. Sample sizes were set to n = 200, 600, 1000, 1100, and 2000. The
probability P(Z = 2) = r,, with r,, = 1/2, 1/6, 1/2, 1/11, and 1/2 for the corresponding
sample sizes. We set 7, to 2, as suggested in the preceding set of simulations. DGPs (1)-(4)
are the cases where (3) was violated and (4) was not violated, and DGPs (5) and (6) are
the cases where both (3) and (4) were violated. We let U ~ Unif(0,1), V' ~ Unif(0, 1),
W ~ Unif(0,1), and Z = 2 x 1{U < r,} + 1{rp, < U < 1, +0.2}.

For DGPs (1)-(4), we let D, = 2 x 1{V < 0.45} + 1{0.45 < V < 0.55} for z = 0,1, 2,
D=3Y2_,1{Z =z} x D,, Nog ~ N(0,1), Nig ~ N(0,1), and Ny, ~ N(0,1) for d = 0,1,2
and z =1, 2.

(1): Nog ~N(=0.7,1)and Y = 32 1{Z = 2} x (X7, 1{D = d} x Ng.).
(2): Nog ~N(0,1.675%) and Y = 322 1{Z = 2z} x (34_, 1{D = d} x Ng.).
(3): Nag ~N(0,0.515%) and Y = 32 1{Z = 2z} x (35_, 1{D = d} x Ng,).

(4): Nagg ~ N(—1,0.1252), Nog, ~ N(—0.5,0.1252), Nag. ~ N(0,0.1252),
Naog ~ N(0.5,0.1252), Nage ~ N(1,0.125%), Nog = 1{W < 0.15} x Ny, + 1{0.15 <
W < 0.35} X Nogp+1{0.35 < W < 0.65} x Naoe+1{0.65 < W < 0.85} x Nogg+ 1{W >
0.85} X Noge, and Y = S22 1{Z = 2z} x (32_, 1{D = d} x Ng.).

For DGPs (5) and (6), we let Ny ~ N(0,1), N1 ~ N(1,1), and Ny ~ N(2,1).

(5): Dy =2x1{V <0.6}+1{0.6 < V < 0.8}, D; = 2x 1{V < 0.33}+1{0.33 < V < 0.66},
Dy=Dy;, D=2 1{Z=2}xD,,and Y = Y5 ,1{D = d} x Ng.

(6): Dy =2x1{V < 0.33}+1{0.33 < V < 0.66}, D; = 2x1{V < 0.6} +1{0.6 < V < 0.8},
Dy=Dy, D=3 1{Z=2}xD,,andY =37, 1{D =d} x Ny.

All the variables U, V, Noyg, N1g, Nog, No1, N1, No1, Noo, Nia, Noo, Ny, N1, and Ny
were set to be mutually independent for each DGP. We briefly explain how DGPs (1)-(4)
violate (3), which is shown graphically in Figure 2. We let p,(y,d) be the derivative of
P(Y € (—o0,y|, D = d|Z = z) with respect to y for all d,z € {0,1,2}. Similarly to Figure
1, if (3) were true, then we would have py(y,2) < pi(y,2) < pa2(y, 2) everywhere. For DGPs
(1D)-4, p1(y,2) = p2(y, 2) held for all y, but py(y,2) < pi1(y,2) did not hold on some range
of R. DGPs (5) and (6) are the cases where the monotonicity assumption did not hold and
both (3) and (4) were violated.

Table 2 shows the rejection rates under DGPs (1)—(6), that is, the power of the test.
For each DGP and each measure v, the rejection rate increased as the sample size n was
increased. The results for v = ¢ showed that if we have no information about the choice of

&, using the weighted average of the statistics over ¢ is a desirable option. When n > 200,
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Figure 2: Curves of pg (v, 2) (dashed) and p; (y,2) (solid) for DGPs (1)-(4)

— p1(y,2) — p1(y,2) — p1(y,2) — p1(y,2)
-- po(y,2) -- po(y,2) -- po(y,2) L - - po(y,2)

(a) DGP (1) (b) DGP (2) (c) DGP (3) (d) DGP (4)

the rejection rates for using v = 7 were at a relatively high level compared to the results

for using a Dirac measure.

5 Empirical Application

We revisit one empirical example discussed by Kitagawa (2015) to show the performance of
the proposed test in practice. The example is from Card (1993), who used college proximity
as an instrument of years of schooling to study the causal link between education and
earnings. The data are from the Young Men Cohort of the National Longitudinal Survey.
In the original study of Card (1993), the educational level D is a multivalued treatment
variable, while Kitagawa (2015) treated it as a binary treatment variable 7" with 7" = 1{D >
16}. The results of the test of Kitagawa (2015) showed that the instrument was not valid
when no covariates were controlled.

We use the originally defined treatment variable D to reconduct the test. Specifically, the
treatment D is education attainment observed in 1976 (the variable “ed76”), the instrument
Z is whether an individual grew up near a 4-year college (the variable “nearc4”), and
the outcome is log wage observed in 1976 (the variable “lwage76”) in the data set. The
available sample size is 3010. We follow the setup in Section 3 with D = {1,2,...,18} and
Z =1{0,1}. The instrument Z = 1 implies that an individual grew up near a 4-year college.
Table 3 shows the p-values obtained from our test using each measure v. From these results
we conclude that we do not reject the validity of instrument Z.

The testable implication used by Kitagawa (2015) for binary T is that

P(YeBT=0Z=1)-P(YeBT=0Z=0)<0
andP(Y € B T=1Z=1)-P(Y €eBT=1Z=0)>0 (36)

for all closed intervals B. The inequalities in (36) are equivalent to the following for all
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Table 2: Rejection Rates under H; for Multivalued D and Multivalued Z

DGP

¢ for &¢

0.07

0.1

0.13

0.16

0.19

0.22

0.25

0.28

0.3

1

(1)

200

600
1000
1100
2000

0.060
0.672
0.606
0.889
0.969

0.140
0.683
0.729
0.859
0.988

0.175
0.616
0.790
0.720
0.993

0.200
0.482
0.792
0.504
0.987

0.185
0.323
0.775
0.314
0.989

0.155
0.230
0.738
0.216
0.979

0.153
0.214
0.715
0.217
0.975

0.153
0.214
0.715
0.217
0.975

0.153
0.214
0.715
0.217
0.975

0.153
0.214
0.715
0.217
0.975

0.159
0.516
0.777
0.658
0.991

(2)

200

600
1000
1100
2000

0.030
0.347
0.404
0.434
0.896

0.060
0.168
0.379
0.123
0.897

0.074
0.069
0.294
0.054
0.775

0.076
0.054
0.146
0.059
0.521

0.076
0.059
0.088
0.059
0.269

0.069
0.059
0.059
0.059
0.177

0.072
0.056
0.062
0.060
0.154

0.072
0.056
0.062
0.060
0.154

0.072
0.056
0.062
0.060
0.154

0.072
0.056
0.062
0.060
0.154

0.064
0.083
0.153
0.084
0.635

(3)

200

600
1000
1100
2000

0.087
0.695
0.660
0.884
0.968

0.177
0.719
0.743
0.924
0.985

0.240
0.728
0.826
0.899
0.991

0.307
0.693
0.856
0.773
0.995

0.325
0.577
0.880
0.622
0.995

0.297
0.466
0.887
0.516
0.998

0.290
0.434
0.875
0.517
0.999

0.290
0.434
0.875
0.517
0.999

0.290
0.434
0.875
0.517
0.999

0.290
0.434
0.875
0.517
0.999

0.262
0.673
0.878
0.840
0.999

(€]

200

600
1000
1100
2000

0.038
0.402
0.331
0.498
0.597

0.099
0.376
0.433
0.526
0.704

0.147
0.366
0.407
0.492
0.710

0.155
0.290
0.406
0.355
0.725

0.148
0.207
0.444
0.203
0.741

0.138
0.209
0.475
0.137
0.769

0.135
0.189
0.477
0.137
0.791

0.135
0.189
0.477
0.137
0.791

0.135
0.189
0.477
0.137
0.791

0.135
0.189
0.477
0.137
0.791

0.146
0.304
0.483
0.403
0.796

(5)

200

600
1000
1100
2000

0.365
0.980
0.994
1.000
1.000

0.487
0.990
0.998
1.000
1.000

0.589
0.995
0.999
1.000
1.000

0.626
0.997
0.999
1.000
1.000

0.685
0.998
1.000
1.000
1.000

0.752
0.998
1.000
1.000
1.000

0.780
0.998
1.000
1.000
1.000

0.780
0.998
1.000
1.000
1.000

0.780
0.998
1.000
1.000
1.000

0.780
0.998
1.000
1.000
1.000

0.699
0.998
1.000
1.000
1.000

6)

200

600
1000
1100
2000

0.372
0.704
0.992
0.912
1.000

0.482
0.823
0.999
0.957
1.000

0.545
0.904
1.000
0.979
1.000

0.616
0.929
1.000
0.984
1.000

0.659
0.962
1.000
0.990
1.000

0.701
0.981
1.000
0.995
1.000

0.711
0.988
1.000
0.995
1.000

0.711
0.988
1.000
0.995
1.000

0.711
0.988
1.000
0.995
1.000

0.711
0.988
1.000
0.995
1.000

0.664
0.965
1.000
0.990
1.000

closed intervals B:

P(Y€B,D<16/Z=1)—P(Y € B,D <16/Z=0)<0

andP(Y € B,D >16|Z=1)—P(Y € B,D > 16|Z = 0) > 0,

(37)

which are different from those in the testable implication given in (3) and (4) and are not

implied by Assumption 2.2. Thus a valid instrument Z for multivalued D which satisfies

the testable implication given in (3) and (4) may not satisfy the inequalities in (36), that is,

Z may not remain valid for binary (or coarsened) 7'. This provides a possible explanation

for why we accept Z but Kitagawa (2015) rejected it.

To be more explicit, we consider a simpler example. Let U ~ Unif (0, 1), V' ~ Unif (0, 1),
Yy ~ Unif (d,d+ 1) for d € {0,1,2}, Z = 1{U <05}, D = 3.._,1{Z = 2} x D, with
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Table 3: p-values Obtained from the Proposed Test for Each Measure v

¢ for o¢ _
0.07 0.1 0.13 0.16 0.19 0.22 025 0.28 0.3 1 Ve
0.958 0.975 0975 0975 0.975 0.975 0.975 0.975 0975 0.975 0.973

Dy=2x1{V<01}+1{01 <V <05}and D; =2 x 1{V <0.5} +1{0.5 <V <0.6},
andY = Zzzo 1{D =d} x Yy, where U, V, Yy, Y1, and Y; are mutually independent. We
can verify that Assumption 2.2 holds for Z and D in this example. It can be shown that
for every Borel set B and each z € {0,1}, P(Y € B,D>1|Z=2)=P(Y1 € B,D,=1) +
P (Y2 € B,D, = 2). Let B = [1,2]. Then we have

P(YeB,D>1Z=1)—P(Y € B,D>1|Z = 0)
:P(D():O,Dl:1)—P(D0:1,D1:2)<0. (38)

The inequality in (38) shows that the valid instrument Z for multivalued D does not satisfy
the inequalities as those in (37). Equivalently, the instrument Z is not valid for the coars-
ened treatment 7' = 1{D > 1}. The reason why Z does not remain valid is as follows.
Assumption 2.1 for Z and T specified in this example requires Y}, = Y} almost surely for
t € {0,1}, where Y/, is the potential outcome variable for ' =t and Z = z with ¢t € {0,1}
and z € {0, 1}. With the potential outcome variables, we can write

1

Y=Y 1{D=d} - Yy=> 1{Z =2} <Zl{T:t}-Yt’z>.
d=0 t=0

z=0

For every w € Q with Z(w) = zand T(w) = 1, Y (w) = Y5, 1{D, (w) =d} - Yy (w) =
Y/, (w). If Y/, = Y{, almost surely, it follows that

2 1
Y, =Y{, = Z 1{D =d}-Ys+1{D =0} - W almost surely with D = Z 1{Z ==z2}-D,,
d=1 z=0
(39)

where W is a random variable such that W(w) = Y{,(w) = Y{;(w) for almost all w with
T(w) = 0. However, (39) shows that Z affects Y, and Y7, through D, and therefore Y},
and Y7, are not necessarily independent of Z. Thus Assumption 2.1(ii) may fail for Z and
(coarsened) 7.

For empirical or theoretical reasons, we may want to coarsen a multivalued treatment
to be a binary variable in some circumstances. However, Angrist and Imbens (1995, p. 436)
and Marshall (2016) showed that such coarsening may lead to inconsistent estimates for the
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average per-unit treatment effect and the effect of obtaining a particular treatment intensity
level beyond obtaining only the preceding level. They provided several special cases in
which the estimates could be consistent, such as the case where the instrument only affects
reaching a particular treatment intensity and the case where the effect at all intensities
other than a particular one is zero. But further discussion of Marshall (2016) showed that
these cases are often implausible in practice. For the data set of Card (1993), the treatment
variable defined by Kitagawa (2015), T = 1{D > 16}, can be considered as a four-year
college degree. The simple numerical example designed above shows that coarsening may
undermine the validity of the instrument for T, so the IV estimate for the effect of obtaining
a college degree may be inconsistent. This provides another perspective for understanding
the inconsistency of the coarsened estimator. In general, therefore, coarsening is not a
desirable option for us. This also shows the significance of the generalization of the test in
the present paper.

6 Conclusion

In this paper, we provided a general framework for testing instrument validity in hetero-
geneous causal effect models. We generalized the testable implications of the instrument
validity assumptions in the literature, and based on them we proposed a nonparametric
bootstrap test. An extended continuous mapping theorem and an extended delta method
were provided to establish the asymptotic distribution of the test statistic, which may be of
independent interest. The proposed test can be applied in more general settings and may

achieve power improvement.

Appendix

A Extended Continuous Mapping Theorem and Extended Delta
Method

We follow van der Vaart and Wellner (1996) to introduce some notation we use multiple
times in the appendix. Let (2, A, P) be an arbitrary probability space. For an arbitrary map
T : Q — R, we define the outer integral or outer expectation of 7' with respect to IP by

E*[T)=inf {E[U]:U >T,U : Q — R measurable and F [U] exists} .

26



The outer probability of an arbitrary subset B of 2 is
P*(B)=inf{P(A): AD B,Ac A}.
The inner integral (or inner expectation) and the inner probability can be defined as
E,[T]=—-E*[-T] and P, (B)=1-P*(Q\ B),

respectively. We denote a minimal measurable majorant of 7' (resp. a maximal measurable
minorant) by 7™* (resp. T.), which always exists by Lemma 1.2.1 of van der Vaart and
Wellner (1996). Suppose 7' is a real-valued map defined on an arbitrary product probability
space (21 x Q9, A1 x A2, P; x Po). We write E*[T] for the outer expectation as before, and
for every wy, we define

E3[T)(w1) = inf / U (wp) P (ws), (40)

where the infimum is taken over all measurable functions U : Qy — R with U(ws) >
T(wi,ws) for all wy such that [ U dP, exists. Then Ej[Ej;[T]] is the outer integral of the
function E3[T] : Q1 — R, and we call Ef[E;[T]] the repeated outer expectation. We define
the repeated inner expectation E1,[FE».[T]] analogously.'*

Theorem A.1 (Extended continuous mapping) Let D and E be metric spaces with metrics
d and e, respectively. Let Dy C D. Let X be Borel measurable and take values in Dy. Suppose,
in addition, that either of the following conditions holds:

(a) Let D, C D. Let X, : Q@ — D with X,,(w) € D, for all w € Q and all n. Let g, be a
random map with g, (w) : D,, — E (for every w € Q, g,(w) is a map on D,,). The random
map gy, satisfies the condition that for every ¢ > 0 there is a measurable set A C Q) with
P(A) > 1 — ¢ such that if ©,, — z with x,, € D,, and x € Dy, then g, (x,) converges to
g (z) uniformly on A (sup,,c 4 €(gn(w)(xn), g(z)) — 0),'> where g : Dy — E is a fixed
(deterministic) map. Also, X is separable.

(b) Let D, (w) C D forallw € Q and all n. Let X,, : Q@ — D with X,,(w) € Dy,(w) for all
w € Qand all n. Let g, be a random map with g,(w) : D,(w) — E (for every w € €,
gn(w) is @ map on D, (w)). The random map g, satisfies the condition that for every
e > 0 there is a measurable set A C Q with P(A) > 1 — e such that for every subsequence

14Additional technical details about the repeated expectations can be found in van der Vaart and Wellner
(1996, pp. 10-12).

15This is a condition similar to almost uniform convergence. See Definition 1.9.1(ii) of van der Vaart and
Wellner (1996). By Lemma 1.9.2(iii) of van der Vaart and Wellner (1996), almost uniform convergence is
equivalent to outer almost sure convergence if the limit is Borel measurable.
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{zn,, }, If pn,, = x With x,,,, € Dy, (wn,,), wn,, € A, and x € Dy, then gy, (wn,,) (zn,,)
converges to g (x), where g : Dy — E is a fixed continuous map.

Then we have that
(1) X, ~ X implies that g, (X,,) ~ g (X);

(ii) If X,, converges to X in outer probability,'® then g, (X,,) converges to g (X) in outer
probability;

(iii) If X,, converges to X outer almost surely,'” then g, (X,,) converges to g (X) outer almost
surely.

Remark A.1 Theorem A.1 is an extension of Theorem 1.11.1 (extended continuous mapping)
of van der Vaart and Wellner (1996). Theorem 1.11.1 of van der Vaart and Wellner (1996)
assumes that every g, is a fixed map. Theorem A.1 allows every g, to be random. Theorem
A.1(1) will be used to establish Theorem A.2 (extended delta method).

Proof of Theorem A.1. Suppose Condition (a) holds. Assume the weakest of the three
assumptions: the one in (i) that X,, ~ X. First, let D, be the set of all x for which
there exists a sequence {z,,} with =, € D,, and z,, — z. By the representation theorem
(see, for example, Theorem 9.4 of Pollard (1990) or Theorem 1.10.4 of van der Vaart and
Wellner (1996)), along the lines of the second paragraph in the proof of Theorem 1.11.1 of
van der Vaart and Wellner (1996), we can show that P, (X € D) = 1. Second, fix ¢ and a
measurable set A with P(A) > 1—¢ that satisfies the assumptions, and suppose there is some
subsequence such that z,, — x with z,, € D, for all n’ and z € Dy N Dy,. Since z € Dy,
there is a sequence y,, — x with y,, € D, for all n. Fill out the subsequence z,, to an entire
sequence by putting z,, = y,, for alln ¢ {n’}. Then by assumption, g,(x,) — g(z) uniformly
on A on this entire sequence, hence also on the subsequence, that is, g,/(z,) — ¢g(z)
uniformly on A. Third, let z,,, — x in Dy N D,. For every m, there is a sequence y,, , € D,
with ¥y, n, — =p, @s n — oo. Fix a small ¢ > 0 and a measurable set A with P(4) > 1 —¢
that satisfies the assumptions. Now we have that g,,(¢m.n) — g(2,) uniformly on A. For
every m, take n,, such that |y, n,. —xm| < 1/m and |gn,, (Ym.n..) — 9(xm)| < 1/m uniformly
on A and such that n,, is increasing in m. Then y,, ,,, — z, and hence g,,, (ym.n,.) = 9(z)
uniformly on A. Since |g(zm)—9(z)| < |gn.,, Ym.nm) —9(@m)|+ |90 Ym,n, ) —g(z)| uniformly
on A, we have |g(z,) — g(z)| — 0. Thus g is continuous on Dy N Dy

For simplicity of notation, we will write Dy for Dy N D.,. Without loss of generality,
we assume that X takes its values in Dy. Since g is continuous on Dy now, g(X) is Borel
measurable.

16See Definition 1.9.1(i) of convergence in outer probability in van der Vaart and Wellner (1996).
7See Definition 1.9.1(iii) of outer almost sure convergence in van der Vaart and Wellner (1996).
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(i). Let F' be an arbitrary closed set in E. By the assumptions, for every ¢ > 0 there is
a measurable set A C Q with P(A) > 1 — ¢ such that if z,, — = with x,, € D,, and = € Dy,
then g, (x,,) converges to g (x) uniformly on A, that is, sup,,c 4 |gn (w) (zn) — g ()| — 0. Fix
¢ and A. Then

MRt U3y, Uwea (gm (W)™ (F) C g7 (F) U (D — Dy). (41)

Suppose z is an element of the set on the left-hand side of (41). For every n, there exist
n' > n, wy € A, and 2,y € g (wy) Y(F) C D, such that d(z,,x) < 1/n. Therefore,
there is a subsequence z,,, € gn,,(Wn,,) *(F) C D,,, with w,,, € A such that n,, 1 oo and
Zp,, — © as m — oo. By the definition of A, either g, (wp,,)(zn,,) = g(x) or x ¢ Dy. Since
F is closed, this implies that g(x) € F or x ¢ Dy. Then for every £,

lim sup P* (gn (X,) € F) < lim sup P* ({{Xn € Ux_ gm! (F)} N A} U AC>

o —li::so:pE [(1 {{Xn €U gml (F)} N A} V1 {AC})*} , (42)

n—oo

where the equality is from Lemmas 1.2.3(i) and 1.2.1 of van der Vaart and Wellner (1996).
Then by Lemmas 1.2.2(viii), 1.2.1, and 1.2.3(i) of van der Vaart and Wellner (1996),

E {(1 {{Xn €U gt (F)} N A} Vi {AC})*}
—E [(1 {{Xn €U gm! (F)} N A}>* v (1 {AC})}
<P* ({Xn € U%_ gm! (F)} N A) TP (A9). (43)

By (42) and (43), together with Theorem 1.3.4(iii) (portmanteau) of van der Vaart and
Wellner (1996), we have

limsup P* (g, (X5) € F) <limsupP* ({Xn € UX_, g’ (F)} N A) + P (A9

n—oo n—oo

< lim sup P* (Xn € U Uuea (gm (W))_l (F)) +e

n—oo

<P (X €U, Unea (gm (W) (F)) te.

Letting k — oo together with (41) gives

lim sup P* (g, (X) € F) < P (X € N2, 050 Uuea (gm (@) T (F)) +¢

n—oo

<P(g(X)eF)+e.
Since ¢ can be arbitrarily small, we can conclude that limsup,,_,. P* (g, (X,,) € F) <
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P (g (X) € F). By Theorem 1.3.4(iii) of van der Vaart and Wellner (1996) again, g, (X;) ~
g9(X).

(ii). Choose §,, | 0 with P* (d (X,,, X) > 0,) — 0. Fix e > 0. Let A C §2 be a measurable
set with P(A) > 1 — ¢ that satisfies the assumptions. Let B, (w) be the set of all = such
that there is a y € D,, with d (y,z) < 6, and e (g, (w) (y) , g (z)) > €. Let B, = UyeaBp(w).
Suppose = € B, for infinitely many n. Then there are sequences w,,, € A and z,, €
Dy, with z,, — x such that e (g, (wn,,) (¥n,,),g(x)) > € for each m. This implies that
Zp,, — = with z, € D,  but that g,, (z,, ) does not converge to g(x) uniformly on A.
Thus by assumption, = ¢ Dy. Note that = € limsup B,, is equivalent to = € B, for infinitely
many n. Thus we can conclude that limsup B,, N Dy = &. Since g is continuous on Dy,
B, Ny is relatively open in Dy and hence relatively Borel. This is because if z € Dy is
close enough to = € B,, Ny, then d(y, z) < d(y,x) +d(x, z) < d, and e (g, (W) (y),9(2)) >
e(gn (W) (y),g9(x)) —e(g(z),g9(x)) > e. Since X takes values in Dy by assumption, by

Lemma 1.2.3(i) of van der Vaart and Wellner (1996),
P*(X € By) = E*[1{X € B,}] = E[1{X € B, NDy}].
Also, by the dominated convergence theorem,

El{X e B, NDy}] <E1{X € Us_, (B NDp)}]
—E[I{X ens>,uUx_ (BnNDy)} =P (X € limsup B, NDy) = 0.

This implies that P* (X € B,,) — 0 as n — oo. Now we have that

P* (e(gn(Xn), 9(X)) > &) <P* ({e(gn(Xn), g(X)) > e} N A) + P (A°)
<P*"(XeB,ord(X,,X)>d,)+e—e.

Since ¢ is arbitrary, the claim holds.

(iii). By Lemmas 1.9.3(i) and 1.9.2(iii) of van der Vaart and Wellner (1996), it suffices
to prove that sup,,,>,, € (gm (Xm) , g (X)) converges to 0 in outer probability. Choose §,, | 0
with P* (sup,,>,, d (X, X) > 0,) — 0. Fixe > 0. Let A C Q be a measurable set with
P(A) > 1 — e such that if ,, — = with x,, € D,, and = € Dy, then g, (z,,) converges to g (x)
uniformly on A. Let B, (w) be the set of all = such that there are m > n and y € D, with
d(y,z) < 0n and e (gm (w) (v),g(z)) > . Let By, = UyeaBn(w). Then we can finish the
proof along the lines of the proof of (ii).

Suppose Condition (b) holds. Repeat the proofs of (i), (ii), and (iii) under Condition
(a) with the properties of g, and g under Condition (b). For (ii), let B, (w) be the set of all
x such that there is a y € D, (w) with d (y,z) < 6, and e (gy, (w) (y) , g (z)) > e. For (iii), let
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B, (w) be the set of all = such that there are m > n and y € D,,(w) with d(y,z) < 6, and
e(gm (W) (y),g(x)) > e. The key difference is that Condition (a) requires that X,,(w) € D,
for all w holds for some fixed I,,. Condition (b) only requires that X,,(w) € D, (w) for all
w holds for some random D,, which can take different values D,,(w) for different w. On the
other hand, Condition (b) strengthens the properties of g,, and g so that the claims hold as
well. m

Theorem A.2 (Extended delta method) Let D and E be metric spaces, and let r,, be con-
stants with r,, — oo. Let qASn : Q0 — Dx C D be a random element for every n. Let Dy C D.

(i) Let F : Dr — E satisfy the condition that for every ¢ > 0, there is a measurable set
A C Qwith P(A) > 1 — ¢ such that for some map F, on Dy,

Tn(]:(ésn + Tglhn) - -F(ﬁz)n)) — -7:<;> (h)

uniformly on A for every convergent sequence {h,,} C D with ¢, (w)+7r; *hy, € D for all
nand all wand h, — h € Dy. If X, : Q — Dx are maps with X,,(w) —én(w)—s—(ﬁn(a)’) IS
Dz for all w,w’ € Q and r,(X,, — gz@n) ~+ X, where X is separable and takes its values in
Do, then ry(F(Xn) — F(dn)) ~ F, (X). Moreover, if F, is continuous on all of D, then
T (F(Xn) — F(én)) — Fy(rn(Xn — ¢r)) converges to zero in outer probability.

(ii) Let F : Dr — R satisfy the condition that for every ¢ > 0, there is a measurable set
A C Qwith P(A) > 1 — ¢ such that for some continuous map F on Dy,

T, {]:(anm (Wnp,) + r;,i Prpn) — ‘F(anm (Wnm )} — -7:;5 (h)

for every convergent subsequence {h,,, } C D with ¢, (wn,,) + 71y by, € DE, wy,, € A
and hy,, — h € Do. If X,, : Q — Dz are maps with rn(Xn—qgn) ~+ X, where X takes its
values in Dy, then r,(F(X,) — F(dn)) ~ Fy (X). Moreover, if F is continuous on all
of D, then r,(F(X,) — F(én)) — ]-'(;(rn(Xn — ¢n)) converges to zero in outer probability.

Remark A.2 Theorem A.2 is an extension of Theorem 3.9.5 (delta method) of van der Vaart
and Wellner (1996). Here, ¢, is allowed to be random, which is the key difference between the
two theorems. Theorem A.2 is used to establish the asymptotic distribution of the test statistic
under null.

Proof of Theorem A.2. (i). The proof mainly relies on the results of Theorem A.1. Define
Dy(w) ={h €D: ¢, (w) +r;'h € Dr} for every n and every w € . Let D), = Ny,eqDyp (w).
Define g,,(w) (h) = n(F(dn(w)+7; h) — F(dn(w))) for every n, every w € , and every h €
D,,. Here, g,, is a random map because of g?)n For every n and every w € €, g, (w) : D, — E.
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By the assumptions, for every ¢ > 0 there is a measurable set A C Q with P(A) > 1 —¢
such that if h,, € D, with h, — h € Dy, then g, (h,) — ]-'é) (h) uniformly on A. Also,
Tn(Xn(w) — én(w)) € Dy, for all w by assumption. Now by Theorem A.1(i) (under Condition
(@),

ra(F(Xn) = F(bn)) = gu(ra(Xn = dn)) ~ Fy (X) .

Moreover, suppose F; is continuous on all of D, and let f,, (k) = (gn (h) , F, (h)) for every
h € D,. By Theorem A.1(i) again,

(70 (F(X) = F(B0))s Fora(Xas = 6u))) = fulra(Xa = bu)) ~ (Fp Fp) (X).

Thus by Theorem 1.3.6 (continuous mapping) of van der Vaart and Wellner (1996),
ro(F(Xn) — F(dn)) — Fo(rn(Xpn — én)) ~ 0. The claim follows from Lemma 1.10.2(iii)
of van der Vaart and Wellner (1996).

(ii). Together with the continuity of F’,, by arguments similar to the proof of (i), we can
show that the claim holds by Theorem A.1(i) (under Condition (b)). m
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Instrument Validity for Heterogeneous Causal Effects
Supplementary Appendix (Not Intended for Publication)

The supplementary appendix consists of two sections. Section B provides the proofs of
the main results in the text. Section C shows the power comparisons between the proposed
test and the test of Kitagawa (2015) via Monte Carlo simulations.

B Proofs of Main Results

Lemma B.1 Let P be the set of probability measures defined in Section 3. Let H1, H1, Ha, Ha,
H, and H be as in (9). Then for every Q € P, the closures of H1 and Hs in L?(Q) are equal to
1 and Ha, respectively. Also, the closure of H in L?(Q) is equal to H for every Q € P.

Proof of Lemma B.1. Let #;; = {(-1)*- Ipxiayxr : Bis aclosed interval in R} for
d € {0,1}. We first show that the closure of H 4 in L?(Q) is equal to

Hig = {(—1)d ‘1pyfdyxr : B is a closed, open, or half-closed interval in R} .

If this is true, the first claim of the Lemma follows from #; = H10 U Hi1.

Suppose there is a sequence {h,} C H14 such that ||k, — Al 2 — 0 for some h €
L*(Q). Then h,, is a Cauchy sequence, that is, ||k, — hml|2(q) = 0 as n,m — oco. By the
definition of H14, h, = (—1)d - 1p, x{d}xr, Where B, is a closed interval in R. It is possible
that [ 15, «(ayxr dQ — 0, and in this case there is a B = {a} for some a € R such that
Q(BxRxR)=0and h, — (—1)¢- Ipxiayxr € Hia- If [ 15, xfayxr dQ # 0, then there is
an ¢ > 0 such that for all n. > 0, there is an n > n. such that thH%g(Q) > ¢e. Fora §; < ¢,
there is an N; such that ||k, — hmH%g(Q) < 67 for all m,n > Ny. Thus there is an n; > N;
such that ][hnl\\%2(Q) > ¢ and ||hy, — hp, H%z(Q) < 01 for all n > Nj. Now let 02 be such that
0 < J < 01. Then there is an Ny > ny such that ||h, — hmH%z(Q) < &y for all m,n > N.
Thus there is an ny > Ny such that || A, H%Q(Q) > e and ||hy — hp, Hig(Q) < 09 for all n > Ns.
In this way, we can find a sequence {h,, }, with h,, = (-1)?. g, x{dyxR> |hn, H%Q(Q) > g,
|, — hnkﬂiz(@ < 0y, for all n > ny, and &5, | 0. Let B® = U2y M2, By, For every K,
|y, — hnK||i2(Q) < g for all k > K. Notice that for every K’ > K,

e = (1) L By (apxrllTz(o) /HBnKX{d}XR_l( B )x{dyxe|” dQ

Z/anK\(mZOK,Bnk)x{d}deQ+/1(m;°K,Bnk)\B,,,Kx{d}deQ



Because B, is a closed interval for all k, we have that for every K" > K’, there exist L; and
Ly with K" < Ly < Ly < K" such that U, (Bu,e \ Br,) = (Bny \ Bny,) U (Buy \ Bny, )
Then since

[[my, — hnKH%Q(Q) = Q(Bny \ By, x {d} X R) + Q(Bn, \ Bny x {d} xR) <dg
for all kK > K, we have
/1BnK\(ﬂ:°_K,Bnk)x{d}xR dQ = Q(Bny \ (M2 Bny) X {d} x R)

Similarly, it is easy to show that [ 1“?—;« Buy )\Bnj x{d} xR d@ < 20k. Thus it follows that

thK - (_1)d ’ l(ﬂ"o Bnk)x{d}xRH%ﬂ(Q) < 4dg,

k=K'
which is true for all K/ > K. Letting K’ — oo, by the dominated convergence theorem

(B> = Uj2, Ni2; By,) we have

thK - (_1)d ' 1B°°><{d}xR||%2(Q) < 40k

This implies that || Ay, — (—1)d oo xqayxrllL2() = 0 as K — oo, because dx | 0. Finally,
we have

A — (=1) - Lpsosqayxrll2@) < Mhn = hogllz2(@) + hnge — (=1)* - 1oy fayxrllz2(g) — 0.

Clearly, B> can be a closed, open, or half-closed interval in R. Also, every element of H 4 is
equal to the limit of a sequence of elements of 4 under the L?(Q) norm. Thus the closure
of H14 in L?(Q) is equal to H4 for every Q € P. Similarly, we can show that the closure
of Hs in L?(Q) is equal to H for every Q € P. As a result, the closure of H = H; U Hs in
L*(Q)isequalto H = H, UHy forevery Q € P. m

Lemma B.2 Let H; and H, be defined as in (9). Then H; is a VC class' with VC index
V (H1) = 3, and Hy is a VC class with VC index V (Hsa) = 2.

Proof of Lemma B.2. All the functions h € H; take the form h = —1g, (13« OF h =
1y {0y xr, Where B is a closed interval. If h = —1p, {1} «r, the subgraph of h is

Cip = {(y,w,z,t) CR 1t < ~Ipxqiyxr (Y, w,2)} -

!See the definition of VC class of functions in van der Vaart and Wellner (1996, p. 141).



If h = 1B, {0y xR, the subgraph of A is

Cog = {(vavzat) CR*:t< 1B><{0}><R (y,w,z)}.

Let C ={Cyp : Bisaclosed interval in R,d € {0,1}}.
Suppose there are two different points a; = (yi, w1, 21,t1) ,a2 = (y2,wa, 20,t2) € R*

with y; < 92, w1 = wy = 0, and 0 < ¢;,t2 < 1. Then there is a point § € (y1,y2). Let

Bo = {y}, B1 = [y1,9], B2 = [§,y2], and B3 = [y1,y2]. Now we have @& = Cop, N {a1,az},
{al} - COB1 N {a17a2}> {a2} = COBQ N {a17a2}, and {al,ag} = C[)B3 N {al,ag}. Thus C
shatters {a1, as}.

Suppose now there are three different points a1 = (y1, w1, 21,t1), a2 = (y2, w2, 22, t2),

as = (y3,ws, 23,t3) in R*. Without loss of generality, suppose ¢; < ty < t3 < 1, so that it is
possible for C to pick out {a;} for each j € {1,2,3}.

(1)

(2)

(3

4

Suppose t; > 0. In this case, we need w; = wy = w3 = 0 in order to pick out {a;}
for each j. Without loss of generality, suppose y; < yo < ys. If we want C to pick
out {ai, a3}, we need to find a closed interval B such that y;,y3 € B, in which case
a1, a3 € Copg. However, as € Cyp for all such B.

Suppose t; < 0, t2 > 0. Then we need wy = w3 = 0 in order to pick out {a;} for each
j € {2,3} by using Cyp for some closed interval B. But in this case, C can never pick
out {az}, {as}, or {az, a3}, since for every closed interval B, a; € Cyp.

Suppose t1,ty < 0, t3 > 0. Then we need w3 = 0 in order to pick out {as} by using
Cyp for some closed interval B. In this case, C can never pick out {as}, since for every
closed interval B, a1, a2 € Cyp.

Suppose t1,t2,t3 < 0. Then for every closed interval B, a1, as,a3 € Cyp. If we want
C to pick out {aj, aj/} for all j # j/, we need to use Ci . If w; # 1, then for every B,
a; € C1p. Thus we consider w; = wy = w3 = 1.

(a) Suppose —1 < t1,t9,t3 < 0. Without loss of generality, we assume that y; < ys <
y3. But now if we want C to pick out {az}, we need to find a closed interval B
such that y1,y3 € B but y» ¢ B, which is not possible.

(b) Suppose t; < —1 for some j € {1,2,3}. In this case, a; € Cp for every closed
interval B.

Therefore, we conclude that 7, is a VC class with VC index V (H;) = 3. Similarly, we
can show that #5 is a VC class with VC index V (H2) = 2. =



Lemma B.3 Let H be defined as in (9). Then H is totally bounded under ||-[| . ) for every
probability measure () € P and every r > 1.

Proof of Lemma B.3. Let N (¢,#;,L" (Q)) denote the covering number under the L"(Q)
norm for H; for j € {1,2} and all ¢ > 0, where #; is defined as in (9). Since #; and H,
are VC classes by Lemma B.2 with V(#;) = 3 and V(H32) = 2, by Theorem 2.6.7 of van der
Vaart and Wellner (1996) with envelope function ' = 1 and r > 1 we have that for every
probability measure @,

N (e,H11, L7 (Q)) < K13 (16€)® (1/2)*" and N (g, Ha, L" (Q)) < K22 (16e)? (1/¢)"
for universal constants K, Ky > 1 and every ¢ € (0,1). Since H = H; U Ho, we have
N (e,H,L" (Q)) <K13(16€)® (1/e)* + K32 (16e)* (1/2)", (B.1)
which implies that A is totally bounded. m
Lemma B.4 Let H be as in (9). Then H is compact under ||-| 2 q) for every Q € P.

Proof of Lemma B.4. By Lemma B.3, # is totally bounded under ||-[| 2 (¢ for all @ € P.
Suppose that H C ;¢
with center /; and radius /2 under || - ||2(q). By Lemma B.1, H is equal to the closure of

H in L2(Q). Clearly, # C ;e Bzj2(hj) € Ujc s B:(h;), and therefore

B.2(hj), where J is a finite index set and B, 5(h;) is an open ball

N(e,H,L*(Q)) < N(¢/2,H, L*(Q)), (B.2)

which, together with (B.1), implies that  is totally bounded. Since L?(Q) is complete, H
is compact in L?(Q). =
Let # and G be defined as in (9). Let V = {h- f : h € H, f € Gk }. Then define

V=VUGk. (B.3)
Lemma B.5 The function space V is Donsker and pre-Gaussian uniformly in Q € P.
Proof of Lemma B.5. For every 6 > 0 and every ) € P, define
)?@Q = {v —v' su 0 eV, Hv — UIHL2(Q) < 5} and f}go = {(v — 1/)2 cv,v € f/} .

First, we show that %Q is Q-measurable? for all Q € P. Similarly to the construction of H,

2See Definition 2.3.3 of Q-measurable class in van der Vaart and Wellner (1996).



we construct function spaces by

Hy ={ (D" Ups(apum : B = [0, ,0,b € Qa < bd € {0,1}],
Hez ={lrxcxr : C = (—00,c],c € Q}, and Hq = Hq1 U Heo,

where Q denotes the set of all rational numbers. Now define

f}q:{h~f:h€7-lq,fEQK}UQKandf)q&Q:{v—v’:v,v/ef/q,

[0 =0 2y < 8}

By construction, G is a finite set. Since Q is countable (and therefore the set of ordered
pairs of elements of Q is countable), H,; and H, are countable (and therefore H, and V,
are countable).

Clearly, f}qa,Q is a countable subset of 1}5,@ For every v € V), there is a sequence {vm} C
V, such that v,, — v pointwise, because Q is dense in R. For example, if v = (—1)¢-
L(3,va]x{dpxr [RxB z)> We can find vy, = (=1)%1jq,, b, (a0 x2 TRxBRx {2} With am | V2,
b L V3, and ay,, b, € Q. Suppose v — v/ € ]75,Q and vy, v, € f)q such that v,,, — v
and vj,, — v’ pointwise. It is easy to show that [|vm — v}, [ 2(q) < ¢ for large m, that is,
Um — V), € Vys,q for large m. By Example 2.3.4 of van der Vaart and Wellner (1996), Vs ¢ is
Q-measurable, and this is true for all § > 0. Similarly, V2 is Q-measurable.

By the construction of V, F' = 1 is a measurable envelope function with [ F?2dQ < .
Also, lim /o0 SUpgep [ F? - 1{F > M} dQ =0. Forall H € P and all ¢ > 2,

N (5 |l oy V', L2 (H)) - N (5, v, L2 (H)) ~1 (B.4)
Forall H € Pandall € > 0,
2 s . N(C g 12 N (S @
N (e,V, L2 (H)) < N (2,’H,L (H)) N (Q,QK,L (H)) <K-N (Q,H,L (H)) . (B.5)
where K is the number of elements in Gx. Thus by the definition of Y in (B.3),
N (5, v, L2 (H)) <K-N (g,ﬁ,LQ (H)) T K (B.6)

forall H € P and all € > 0. Let Q denote the set of finitely discrete probability measures.
The results in (B.1), (B.2), (B.4), and (B.6) imply that

00 _ 2 ~
/ sup \/1ogN (5 1 2y » V. L2 (H)) de = / sup \/logN (5, v, L2 (H)) de
0 0

HeQ HeQ

§/2 \/log{K-(K1+K2)-3~(166)3 (4/8)4+K}d8< 0.



The claim of the Lemma follows from Theorem 2.8.3 of van der Vaart and Wellner (1996).
]

Lemma B.6 The function space V defined in (B.3) is Glivenko—Cantelli uniformly in Q € P.

Proof of Lemma B.6. Similarly to the proof of Lemma B.5, we can show that V is Q-
measurable for every Q € P. With F = 1 being an envelope function of V, we have
lim s 00 SUPGep JF-1{F > M} dQ = 0. Similarly to the proofs of Lemmas B.1, B.4, and
B.5, we can show that for every Q € P and every £ > 0, the closure of # in L'(Q) is equal to
H, N(e,H,LHQ)) < N(e/2,H,L*(Q)), and N(,V,L* (Q)) < K - N (¢/2,H, L' (Q)) + K.
Then by (B.1), we can show that supycg, log N(e || F|| 11z 2V, L' (H)) = o(n) with the
envelope function F' = 1, where Q,, is the collection of all possible realizations of empirical
measures of n observations. Then by Theorem 2.8.1 in van der Vaart and Wellner (1996),
V is Glivenko—Cantelli uniformly in Q € P. m

Lemma B.7 Let H and G be defined as in (9), let pp be as in (16), and define H x G as the
closure of H x G in L*(P) x (L*(P) x L*(P)) under pp. Then N (e, x G, pp) = O (1/e*)
as e — 0.

Proof of Lemma B.7. By the constructions of % x G and the metric pp,
€ 2 € 2 2
< - . =
N (e, x G, pp) <N (3,H,L (P)) [N (3,gK,L (P))} ,

where G is defined as in (9). By the construction of Gx, N (£/3,Gr, L? (P)) < K, where K
is the number of elements in G . This, together with (B.1), implies that N (¢, H x G, pp) =
O (1/e*) ase — 0. Similarly to (B.2),

N (e, xG,pp) SN(%,’ng,pP> :O<€14> ase — 0.
n

Lemma B.8 Let H and G be defined as in (9), and let pp be as in (16). Then H x G, the
closure of H x G under pp in Lemma B.7, is compact and H x G = H x G, where H is defined
as in (9).

Proof of Lemma B.8. The first claim follows from Lemma B.7 and the fact that L?(P) x
(L?(P) x L?(P)) is complete under pp. The second claim holds by the constructions of pp
andG. m



Proof of Lemma 2.1. Suppose Assumption 2.2 holds. Then we can define Y; by Y; =
Yi,, = Yaqu, = -+ = Yy, almost surely for all d € D. First, suppose dpyax exists. Under
Assumption 2.2, for all £ with 1 < k < K — 1 and all Borel sets B,

P(Y € B,D = dmax|Z = 2z) =P (Ya,,.. € B, D, = dmax)
=Y P (Yapu € B, Dz = dinax, Dy, = dj) =P (Vg € B, Dy = dinax, Dz, = dinax)
J

and

P(Y € B,D = dmax|Z = zk41) =P (Y, € B, D2,y = dinax)

- ZP (Ydmax € B, Dzk = d]’ Dzk+1 = dmax) :
J

Thus P(Y € B, D = dpnax|Z = zk41) > P(Y € B, D = dax|Z = z). Second, suppose dpin
exists. Then similarly, P(Y € B, D = dyin|Z = z1) > P(Y € B, D = dpin|Z = 2k41). W

Remark B.1 Lemmas 2.2, 2.3, and 2.4 can be proved analogously.

Lemma B.9 Let D = {R € (®°(V) : R(h - g))/R(g) exists for all h € H and all g; € G }.
Define £ : Dz C £2°(V) — £ (H x G) by
R(h-g2) R(h-g1)

£(R)(hg) = R (g2) B R(g1)

forall R € D, and all (h,g) € H x G with g = (g1,92). Then L is uniformly Hadamard
differentiable® along every sequence P, — P in D, tangentially to (>°(V), with the derivative
L', defined by

h-g2) P(g2) =P (h-g2) H(g2) H(h-g91)P(g1) = P(h-g1)H (1)

, H
£p 1) 1) = = P2 (g5) - P7(g)

(B.7)
forall H € (>(V).4

Remark B.2 By the definition of £, £(Q) = ¢¢ for all Q € P. We will apply Lemma B.9
along with the suitable delta method to deduce the asymptotic distributions of \/n(¢p, — ¢p)
and the bootstrap version of this random element.

3See the definitions of Hadamard differentiability and uniform Hadamard differentiability in van der Vaart
and Wellner (1996, pp. 372-375).
“By (11), L'» is well defined.



Proof of Lemma B.9. For all ¢, — 0, P, — P, and H,, — H in ¢*°(V) such that P, € D,
and P, + t,H, € D., we have that for each (h,g) € H x G with g = (g1, g2),

L (Pn + thn) (hvg) - L (Pn) (hag)
:thn (h-g2) Py (92) —tn Py (h - g2) Hy (92) tnHny, (h - g1) Pn (91) — tn Py (h -g1) Hy, (91)

(Pn + tnHy) (92) P (92) (Pn + tnHy) (91) P (91)

Thus it is easy to show that

P, TLHn ) - P’rl )
0 () eHXG tn

where L', is defined as in (B.7). This implies that £ is uniformly differentiable and verifies
the derivative in (B.7). =

Lemma B.10 Under Assumptions 3.1 and 3.2 with P,,, P € (*°(V), we have sup,,.; [v/n(P, —
P)(v) — Qo(v)| — 0, where Qo(v) = P(vuvg) for all v € V and vy is as in Assumption 3.2,
and that \/E(Pn — P) converges under P, in distribution to the process Gp + Q) for a tight
P-Brownian bridge G p with E[Gp(v1)Gp(vs)] = P(vive) — P(v1)P(vy) for all vy, ve € V.

Proof of Lemma B.10. The Lemma holds by Assumptions 3.1 and 3.2, the facts that
sup, .y |P(v)| < 1 and sup, ;| P,(v?)| < 1 for all n, Lemma B.5 in this paper, and Theorem
3.10.12 of van der Vaart and Wellner (1996). m

Lemma B.11 Under Assumptions 3.1 and 3.2 with P,,, P € {>(V), we have that P,, — P and
that P, — P, <Z>pn — ¢p, Tn/n — A(P), and 6p, — op almost uniformly.

Proof of Lemma B.11. By Lemma B.10 in this paper, Holder’s inequality, and Lemma
3.10.11 of van der Vaart and Wellner (1996), we have that

1P = Plloc <[P — P = nQolloc + [In7/*Qolloo
<[Py = P =17 2Qoloo + M sup [P(v*) P(v5)['/* = 0,
veV
where Qg is the function defined in Lemma B.10. By Lemma B.6 in this paper and Lemma
1.9.3 of van der Vaart and Wellner (1996), || P, — Py |oo — 0 almost uniformly. Then we have
that || P, — P||oc — 0 almost uniformly. The rest of the results follow from the constructions
of ¢p,, T,,/n, and Gp, . By the construction of H, the aé(h, g) in (17) can also be written as

(B.8)

Ué(hjg):A(Q),{lQ(hm)l _Q(h-g)  [Q(h-g)] _QQ(h-gl)}'

Q? (92) Q3 (92) Q2 (g1) Q3 (g1)



Similarly to (B.8), we can write the ﬁgn (h,g) in (19) as

52 T [[Pa(hoge)| PE(hoge) |Pa(hog))| P2(h-ogy)
() { Pila) | R | Pl B } ®2)

Then the almost uniform convergence of P, to P in ¢>°(V) implies the almost uniform
convergence of the 67, in (B.9) to the 07, as in (B.8). m

Proof of Lemma 3.1. By the Hadamard derivative of £ in (B.7), together with Lemma
B.10 in this paper and Theorem 3.9.4 (delta method) of van der Vaart and Wellner (1996),
we have that under P,

Vi(op, — dp) = Vn{L(B,) — L(P)} ~ Lp (Gp + Qo). (B.10)

By Lemma B.11, 7}, /n — A(P) almost uniformly. Thus by Lemmas 1.9.3(ii) and 1.10.2(jii),
Example 1.4.7 (Slutsky’s lemma), and Theorem 1.3.6 (continuous mapping) of van der
Vaart and Wellner (1996),

VTu(bp, = ¢p) = VTu/n - Vn(dp, — ¢p) ~ AP) 2L (Gp + Qo). (B.11)

Let G = A(P)'/2L, (Gp + Qo). Then G is tight, because Gp is tight and £/, is a continuous
map. Thus (B.11) verifies the first claim of Lemma 3.1. Now we show the continuity of G
under pp. Define a semimetric on % by

po(v,') = E [|Gp(v) — Gp(v')[2]

for all v,v' € V. This semimetric is the one defined in van der Vaart and Wellner (1996,
p. 39) with p = 2. Since Gp is tight, it follows from the discussion in Example 1.5.10 of
van der Vaart and Wellner (1996) that Gp almost surely has a uniformly ps-continuous
path. Since Gp is a P-Brownian bridge,

Ao, v) = Pl(v = )%) = PPo =) < o = v/ 3a(p) (8.12)

for all v,o/ € V. Therefore, Gp almost surely has a uniformly continuous path under
| - [[z2(p)- By Lemma 3.10.11 of van der Vaart and Wellner (1996), P(v) = 0 and P(03) <
oo, where vy is as in Assumption 3.2. Holder’s inequality implies that for every v € L%(P),
v~ 11 py < 1[0l 12(p)- By Holder’s inequality, P and Qo are both continuous on V under
|l 2(p), where Qo is as in Lemma B.10. Suppose that there are (h, g), (1, ¢') € H x G with



9= (91,92) and ¢’ = (g1, g3). Then for j € {1,2} we have

Hg] - Q;HLQ(P) < PP ((hag) ’ (hlagl)) and

|- g; =1 '9;‘“L2(p) <|ln - h/HL2(P) +[lg; - g;HL2(P) <pp((hg), (M.g)). (B.13)
By (B.7) and (B.13), together with the continuity of Gp, P, and Qo under || - ||z2(p), we
conclude that G almost surely has a continuous path under pp.

Next, we show the variance of G(h, g) for each (h,g) € H x G with g = (g1, g2). Since
L'5(H) is linear in H, Var(G(h,g)) = A(P) - Var(L»(Gp)(h, g)). First, we have that

Var(Lp (Gp) (h,9))

(GP (h-g2) P(g2) —P(h-92)Gp(g2) Gp(h-g1)P(g1) —P(h-g1)Gp (91)>2
P2 (g2) P2 (g1) .

=F

(B.14)

Since Gp is a Brownian bridge with E[Gp(v1)Gp(v2)] = P(viva) — P(v1)P(v2) for all
v1,v9 € V, we have

Gp(h-g2) P(g2) — P(h-92) Gp(g2)\”
o ( P2(g2) ) ]
_P(h?-g2) = P*(h-go) N P?(h-g2) P?(h-go) 2P*(h-go)  2P*(h-gs)
; P2 (g2) P3(g2) P2 (g2) P3(g2) P2 (g2)
_P(h-g2)  P(h-g»)
- P2(g) P3(ga) (B-19)
Similarly,

2. 20
_P(Pg) P(hig) g

b P?(g1) P3(g1)

(GP(h'gl)P(gl)—P(h’gl)GP (91)>2
P2 (g1)

Also, we have that

E[(Gp(h-g2) P(g2) — P(h-92)Gp(g2)) (Gp (h-g1) P(g1) — P(h-91)Gp (g1))]
=P (g2) P (1) P (h*g291) — P (g2) P (hg1) P (hgag1) — P (hg2) P (1) P (hgag1)
+ P (hg2) P (hg1) P (g291) = 0, (B.17)

where we use the fact that g; g2 = 0 by the construction of G. By (B.17), the expectation on
the right-hand side of (B.14) is equal to the sum of the expectations in (B.15) and (B.16).
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Thus we now have that

P(h*-g2) P*(h-g2) P(h*-g1) P2(h-g1)
Var(Lp (Gp) (h,g)) = — + _
T CrI ) = T ) B ) P ) P o)
which, together with Var(G(h,g)) = A(P) - Var(L5(Gp)(h, g)), verifies the equality that

Var (G (h,g)) = o%(h, g) for the 0% in (17). For every (h,g) € H x G with g = (g1, g2),

) _ P(h?-gs) P2(h-go) P(*-g1) P2(h-g)
7p ) = AP ){ Pl Plg) | PG P }

_A(P) [P (h-g))] [ B !P(h'92)|] A(P)|P(h-g1) {1_ |P(h‘91)q
P(g2) P(g2) P (g2) P(g1) P(g1) P(g1) |’

Then 0% (h.g) < 1/4- {A(P) /P (g2) + A(P) /P (g1)}, since 0 < |P (hg;)| /P (g;) < 1 for
J € {1,2}. Recall that K is the number of elements in Z. We have that for each j € {1,2},

A(P> < max
P(gj) - 1ISK<K P(leRx{zk/})

Hf:lp (1R><Rx{zk}) < 1 K=
K-1 ’

which implies that

ob (h.g) <1/4- max {A(P)/P () +A(P)/P(gh)} < 1/2- (K =17,

When K =2, 0% (h,g) < 1/4 by the construction of A(P). m
Lemma B.12 Under pp, ¢p and op are continuous on H x G.

Proof of Lemma B.12. Suppose there are (h,g),(h*,¢*) € H x G with ¢ = (g1, 92),
g* = (g%, %), and (h*, g*) — (h,g) under pp. Since G is finite, (h*, g*) — (h, g) under pp
implies that P(gé?) = P(g;) for each j € {1,2} when & is sufficiently large. If P(g;) = 0,°
then by (11) P(h - g;)/P(g;) = 0, P(h" - g})/P(g5) = 0 when  is large, and

P(h-g;) P(h*-g))

Plg)  PWH) |

If P(g;) # 0, then for each j € {1,2} and large k, P(g}“) = P(g;) # 0 and

Hh'gj—hk'gf

P(h-g;) P(h*-gf) ey _ pe((h.9) . (W, g%)

P (g5) P(gh) P (g5) - P (g5)

*If P(g,;) = 0 for some g; € Gr, then A(P) = 0, which is a trivial case. We consider this case only for the
sake of completeness.
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by Holder’s inequality and (B.13). Thus we can conclude that

e el |(P(ig) Phog)\ (POF-gh) PO b
?e (1. 9) ‘b’”(h’g)"( P () P(gn) ( Plh) P )‘%0

if (h*,g*) — (h, g) under pp. Similarly, we can show that op is continuous on H x G under
pp. N

We define some new notation which will be used in the following results. Define a
random element ¢p : Q — (> (2 x H x G) such that for each w € Q and each (¢, h,g) €
ExHxG,

op(h

b
op,(w))

)
B.18
£ hg) (B.18)

and let pp € £ (2 x H x G) be such that for each (£,h,g9) € Zx H x G,

Pr@EN9) = et

@P(éa h7g) =

Here, 6p, is estimated from data, hence it depends on w, and so does ¢p. When there is
no danger of confusion, we omit the w from 6p, and ¢p for brevity. Given each sequence
r, — oo and each v which satisfies Assumption 3.3, define

Dp(w) ={y € L° (ExHxXG) : S (¢p(w) +r,"p) € L' (v)} (B.19)
forall w € , and
gn(@) () =T o S (@p(w) + 7, '¢) (B.20)

for all w € © and all ¢ € D, (w). Here, g, also depends on w; for brevity, we omit w from
gn as well. If the Hy in (13) is true with Q@ = P, for all n, then S(¢p) = 0 by Lemma
B.13, and 50 g, (¢) = rp {ZoS (¢p +1,'¢)) —Z oS (¢p)}. Define a correspondence ¥ :
ExL®(ExHXG)—»HxGby

V(&) ={(hg) eHXxG:9(& N g) =S ¥) (€} (B.21)

forall ¢ € Zand all v € (> (2 x H x G), and define a metric pgy, on = x £ (2 x H x G)
by

Pey((§1,91), (§2,%2)) = |§1 — &of + [|¥1 — Y2l (B.22)
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for all (&1,41), (€2, ¢2) € E x £ (2 x H x G). Also, define a metric on Z x H x G by

Pehg((§1,h1,91), (&2, h2, g2)) = [&1 — &2| + pp((h1, 91), (h2, g2)) (B.23)

for all (&1, h1,91), (€2, ha,92) € = x H x G. For every set A C H x G and every § > 0, define

£ — {(h, G eFxG: i pp((hg), (H.q)) < 5} . (B.24)
(h.g")eA

Lemma B.13 Suppose Assumption 3.2 holds and the Hy in (13) is true with Q = P, for all

n. Then the Hy in (13) is true with Q = P. This implies that SUP (1, g)cHixG PP (h,g) =0, and

hence that S (pp) =0and S (¢p) = 0 for all w € Q.

Proof of Lemma B.13. By Lemma B.11, we have ||P, — P||oc — 0. Thus ¢p, — ¢p in
(>*(H x G), and by the assumption that SUP (4, g xg PP, (B, g) < 0 for all n, we have that
SUp(n,gyerxg @P (h, g) < 0. This implies that sup;, gyesxg #p (b, g) < 0 by the constructions
of ¢p and H. By the construction of H x G, there is some (h,g) € H x G, such as h =
Liayx{0}xr for some a € R, for which ¢p(h,g) = 0. Therefore, sup, gez g ¢p (h,g) =0
under the assumptions. Because ¢ € = is always positive by the construction of =, we have
that S (pp) (§) = 0 for all £ € Z. For the same reason, S (¢p) (§) = 0 for all £ € = and all
weN m

Lemma B.14 The correspondence ¥ defined in (B.21) is upper hemicontinuous® at (¢, ¢p) for
all ¢ € =. In addition, suppose the Hy in (13) is true with Q = P. Then for every § > 0 there
is an ¢ > 0 such that ¥ (¢',4) C U (€, gpP)‘s (where the latter is defined as in (B.24)) for all
¢, eZandallyp € £ (2 x H x G) with || — ¢p| ., <e.

Proof of Lemma B.14. We first show that ¥ is upper hemicontinuous at (¢, ¢p) for all
¢ € E. We do this in three steps. First, we show that ¥ (¢, ¢p) is compact for each
¢ € Z under pp. Clearly, given an arbitrary ¢ € Z, pp (¢, -,-) is continuous on H x G
under pp by Lemma B.12. Because H x G is compact by Lemma B.8, ¥ (¢, ¢ p) is not empty.
Since VU (&, pp) C H x G, it suffices to show that ¥ (¢, pp) is closed in H x G. Fix ¢ € Z.
Suppose there is a sequence {(hn,gn)},, C ¥ (£, pp) such that (hn,g,) — (h,g) € H X
G under pp. Then for all n, ¢p (&, hn,gn) = S(op) (§). Since pp (&, -,-) is continuous
by Lemma B.12, ¢p (§,n,9n) — ¢pr (& h,9) as (hn,gn) — (h,g). Thus op (£ h,g) =
S (¢p) (£), which implies that ¥ (¢, ¢p) is closed in H x G and therefore compact. Second,
we show that if there is a sequence {(&,, 1Y), (hn, gn)} such that (h,, g,) € ¥ (&,,vy,) and
pey((€nytbn), (€, 0p)) — 0, where pgy, is defined in (B.22), then (h,,, g,) has a limit point”

®See Definition 17.2 of upper hemicontinuity in Aliprantis and Border (2006).
’See the definition of limit point in Aliprantis and Border (2006, p. 31).
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in U (&, pp). Notice that by the constructions of = and H x G, Z x H x G is compact
under the metric p¢, defined in (B.23). It is easy to show, by Lemma B.12, that ¢p is
continuous on = x H x G under peng> and hence that it is uniformly continuous. Thus

pew((€ny ), (€, pp)) — 0 implies that

S (¥n) (&) =S (ep) (O < sup  [¥n(&nsh, 9) — 0pP(&ns by 9)|

(h,9)EHXG

+ sup |op(&n,hyg) — @p(8 o)l = 0,

(h,g)EHXG
where SUP(h,g)efixG lop(&nsh,g) — pp (&, h, g)| converges to 0 because yp is uniformly con-
tinuous on Z x ‘H x G under pgp,. This implies that 1), (&, hn, gn) = S (¢p) (§). Suppose,
by way of contradiction, that (A, g,) has no limit point in ¥ (£, ¢p). This implies that for
each (h,g) € ¥ (&, pp) there exist an open neighborhood V}, , of (h, g) and an ny, 4 such that
(hns9gn) € Vh,g when n > ny, 4. Because we have shown that W (£, ¢p) is compact in H x G,
there is a finite open cover V' such that ¥ (§,¢op) CV = Vi o U+~ U Vpur gu. Let ng =
maX,,< M Npm gm. Thus if n > ng, then (hy, g,) € V, and hence (h,,, g,) € ¥ (, ¢p). Since
H x G is compact and V¢ is closed in H x G, V¢ is compact. Notice that V¢ N ¥ (¢, pp) = 2.
Thus

sup pp (& h,g) < sup  pp(§h,g)=  sup  pp(§hg).
(h,g)eve (h,g)eHXG (h,g)€¥(&,0pP)

Let § = sup(, gesixg PP (& Ry 9) — sup( gyeve P (& h, g). Recall that (hy, g,) € V© for all
n > ng. Thus ¢n (5“7 hn, gn) = SuP(h,g)e’fog T/Jn (gna ha g) = Sup(h,g)eVC wn (gna ha g): SO

VYn (&ns hnsgn) — sup  pp (§,h,9)| < sup [Un(&ns by g) — 0P (ns b, 9)
(h,g)eVe (h,g)EHXG

+  sup  |op(&nsh,g) — @p(& R, g)] — 0.
(h,9)EHXG

This implies that for sufficiently large n,

Y (&nshnsgn) < sup @p (&, h,g) + é = Ssup @p (& h,9) — g
(h,g)eVe (h,9)EHXG
This contradicts ¢y, (§n, hn, gn) = S (¢p) (). Thus (hy, g,) has a limit point in ¥ (&, ¢pp).
Third, by Theorem 17.20(ii) of Aliprantis and Border (2006), together with the fact that
B x > (E X H x g) is first countable under the metric p¢,, defined in (B.22) (every metric
space is first countable), ¥ is upper hemicontinuous at (£, pp).
Now we prove the second claim in the Lemma. Fix § > 0. Since ¥ is upper hemicon-
tinuous at (&, ¢p) for all £ € =, we have that for each { there is an open ball B, (£, ¢p)

14



under pg,, with center (£, ¢p) and radius ¢ such that ¥ (¢, ') C ¥ (¢, op) forall (¢/,¢') €
Be, (£, pp), where W (¢, op)’ is defined as in (B.24). Notice that {Bc,/2 (§)}¢ez is an open
cover of Z, where each B, (§) is an open ball in R with center ¢ and radius e¢/2. S-

I

ince = is compact by construction, there is a finite open cover {B., (&)}, of = with
€i = €¢/2. Let ¢ = minj<pre;. Then for every ¢ € = and every ¢ € (> (E x H x g)
with [[¢) — ¢p||,, < e, there is an open ball B, (&, ¢p) such that (§',¢) C B.. (&, ¢p)-
This implies that W (¢/,¢) C ¥ (fi,(pp)é. Suppose the Hj in (13) is true with Q = P. By
Lemma B.13, we have that S (¢p) = 0 and

\I’(f,g&p) = \I’(ga@P) = {(hvg) € 7:1 XG: ¢P (hvg) = 0}
for all £, € € 2. Thus ¥ (&) C (g, 90p)5 for all ¢ € =, that is, the second claim holds. m

Lemma B.15 Suppose Assumptions 3.1, 3.2, and 3.3 hold and the Hy in (13) is true with
Q = P, for all n. For every € > 0, there is a measurable set Qg C Q with P(Qp) > 1 —¢
such that for every subsequence {1y, } with ¢, € Dy, (wn,,), Wn,, € o, where D, (wy,,)
is defined in (B.19), and v, — v for some v € C (2 x H x G) under the pg, defined in
(B.23), we have that

Inm (@Wn) (V) = Lo S\I/(f,gap)<1/]>7

where g, is defined in (B.20).

Proof of Lemma B.15. For simplicity of notation, we replace n,, with n. Note that all
the following results hold for every subsequence indexed by n,,. By Lemma B.8, H x G
is compact under pp. By Lemma B.11, we have 6p, — op almost uniformly. Then by
construction, pp — @p almost uniformly, where ¢p is defined in (B.18). By Lemma B.13,
S(pp) = 0and S(¢p) =0 forallw € Q. For every ¢ € C (2 x H x G), since ¢p (§,-,-) +
rnt (€, -, ) may not be continuous on H x G, ¥ (&, ¢p + r, ') may be empty. Here, we
construct a modified version of ¢ p, denoted by & p, such that

i) op (&, -, ) is upper semicontinuous for every w € €, every n, and every { € =;

(D) suppg)eiixg ¢P (& h,9) = sup(y, gyefixg PP (& h, g) for every w € Q, every n, and
every £ € 5;

(i) sup(, g)esmixg (¢p + 77 0) (€, hyg) = SUD (1, g)eix G (@p + 1, 1) (& h, g) for every func-
tion ¢ € C' (E x H x G), every w € Q, every n, and every £ € Z;

(iv) for every € > 0 there is a measurable set A C 2 with P(A) > 1 — ¢ such that for all
e el>®(ExHxG), gp+r, ¢ — p uniformly on A.
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Specifically, for all w € Q, all (¢, h,g) € E x H x G, and all n, we define $p (&, h, g) by

@P (§7 h7 g) = lim sup @P(§7 h/7 g/)7 (B25)
40 (n',g")€ Bs(h.g)
where B;(h, g) is an open ball in % x G under pp with center (h, g) and radius J.
Fix w € Q, n, and £ € E. First, we prove (i), that is, ¢p(&, -, -) is upper semicontinuous
at every (h,g) € H x G. Fix (h,g) € H x G. By (B.25), for each ¢ > 0, there is a §. > 0 such
that

o (& H.g) <Gp (& hg)+ (B.26)

for all (1, ¢') € Bs. (h,g), where Bs_ (h, g) denotes the open ball in H x G under pp with
center (h,g) and radius .. Fix (h1,91) € Bs_ /2 (h, g). By definition, there is a 2 > 0 such
that for all ¢’ with 0 < §’" < d9,

5 . €
¢p (& h1,91) < sup B (€ h2g2) + 5.
(h2,92)€Bs/ (h1,91)

Let 6 = min {0./2, 62}. Then for this (hy, g1), we have that

op (&, h1,91) < sup op (§7h2,92)+%~
(h2,92)€Bs(h1,91)
Notice that if (hQ,gg) € Bs (hl,gl), then (hQ,gg) € Bga (h,g), and hence ([A)P (5, hg,gg) <
@p (&, h, g) +¢/2. This implies that sup y, ,)e B, (h1,9,) PP (€, P2, 92) < &p (€, h, g) +¢/2, and
hence ¢p (&, h1,91) < @p (&, h,g) + €. This shows that for each £ > 0, there is a . > 0 such
that for all (h1,91) € Bs.j2(h,9), ¢p (&, h1,91) < ¢p (€, h,g) + €. Second, we prove (ii),
that is,

sup @P (57 h‘7g) = sup @P (ga hv g) : (B27)

(h,9)eH*G (h,g)eHXG
By the definition of $p, we have ¢p (£,h,9) < @p (€, h,g) for all (h,g) € H x G, and
hence sup(, \ciixg PP (& h,g) < SUDP(,, g)cFixG PP (&, h,g). Also, by the definition of @p,

@P (gahag) S SUP(h/,g/)eﬂxg @P (57 h,7g,) for all (h7g) Thus Sup(h,g)eﬂxg @P (§7 h7g) S
SUp(p,g)efixg PP (§: h, g), and (B.27) holds. Similarly, by the definition of ¢p, we have

that ¢p (&, h,g) + 1,0 (E hg) < @p (& h.g) + 110 (€, h,g) for all (h,g) € H x G, and
hence

sup  {@p (&, h,9) +1, "0 (b9} < sup {@p (6 h9) + 1, (6,0 9))
(h,9)EHXG (h,g)€HXG
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Fix (h,g) € H x G. Since (&, -,-) is continuous under pp, for every ¢ > 0 thereisa § > 0
such that

sup  {@p(& W g+ (& hg) —eb < sup {@p(& R g+ (R g}
(h.9')€Bs(h.g) (.9')€Bs(h.g)

for all § < §. By the definition of ¢p, this implies that

@p (& h,g) + i (E hg) —e <lim  sup  {pp(& 1, g") + 1 0 (E N, ¢)}
0 (n,g"\eBs(h,g)

< sup {¢p(&hg)+ry (6 R g)}
(h,g)EHXG

Since ¢ is arbitrary, we have

&P (& h,g) 1, 0(& hg) < sup {@p (& hg) + 1, 0 (€ b, g)}-
(h,9)EHXG

This holds for all (h, g) € H x G, which implies that

sup  {@p (&, h,g) + 1 b (& hg)} > sup {@p (&, h,g) + 1y (€ h,g)}
(h,9)EHXG (h,9)EHXG

Thus (iii) is proved.
Last, we prove (iv). Since ¢p(¢, -, -) is continuous, we have that

sup | @p(& h,g) + 106 b g) — op(€ b, g)]
(&:h,9)EEXHXG

< osup [@p(€hg) = ep(Ehg)l + el
(&,h,9)EEXHXG
(iv) follows from the facts that op» — @p almost uniformly, as mentioned at the beginning
of the proof, and ||¢||e < 0.

Fix ¢ > 0. By property (iv), let Qy C Q be a measurable set such that P () > 1 —¢
and ¢p + r, ¢ — ¢p uniformly on Qg for all ¢ € (* (Ex H x G). Let ¢, € Dy(wy),
wn € Do, and ¢ € C (E x H x G) be arbitrary maps such that ¢,, — ¢. By property (i) that
we proved above, we have that ¥ (¢, gp + 7, '¢) # @ forallw € Qq, all n, and all € € =. It
is easy to show that because v, — v in £ (E x H x g),

sup SuP(h,g)eﬁxg {@P(wn) (55 h) g) + T'r:1¢n (57 hv g)}
€= | —SUD(, g)etixg 12P(wn) (&, h,g) + 7 ¢ (€, b, 9) }

<r,' sup [Ya(&hg) —¥(E hg) =0 ().
(&,h,9)EEXHXG
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Since pp + ;19 converges to ¢p uniformly on Qy, by Lemma B.14 there is a sequence
6n I 0 such that ¥ (&, ¢p(w) +r ') C ¥ (€, @p)‘s" forall ¢ € = and all w € . (By Lemma
B.14, 6,, does not depend on £ € E or on w € §)y.) Since S(¢p) = 0 by Lemma B.13, we
have that for all £ € Z,

(&, 0p) ={(h,g) e HxG:¢p(h,g) =0} (B.28)

By Lemma B.13 and the constructions of ¢p and ¢p, we also have that for all w, op < 0
and gp <0onZEx H x G, and ¢p (£,-,-) = 0on ¥ (¢, pp). Thus for every £ € =,

sup  {@p(wn) (& hyg) + 1, (& R, g)}

(h,9)EHXG
> sup  {@p(wn) (& hg) Y (Ehg) = sup (€ hg).
(h,g)EW(E,pp) (hag) €U (€. 0p)

By property (iii) of @ p, together with the results shown above, we have that

sup
£es

sup  {@p(wa) (6 hyg) + 750 (& hg)} = sup 1l (E by g)
(h,g)EHXQ (h,g)e‘l’(f,@p)

:sup{ SUD (1, g) e (¢, 3 (wa) ) 1PP(@n) (6P g) + 770 (€, 7y 9) } }
§e= — SUP(h,g)eW(£,0p) 7}711/1 (& h,9)

Ssup{ sup {@p(wn) (&, b g) + 1" (& hg)} —  sup T’nlw(&h,g)}-
(

£€2 ((hg)eW(&,pp)n (h,9)€¥Y(&:0pP)

Then by the definition of ¥ (¢, pp)»,

sup{ sup {@p(wn) (& hog) + " (E,h,g)} —  sup Tglw(f,h,g)}

§EE (hg)eW(&pp)’" (h.9)E¥ (£40p)

Ssup{ sup Trjl W (gvhlvgl)_w(£7h2>92)|} :O(T'rjl)'

¢€2 | pp((h1,91),(h2,92))<bn

Finally, combining all the results above, we can conclude that

S(¢p(wn) + 1 W) () =1t sup ¥ (& hg)=o0(r,t).

(h.9)€¥(&pp)

sup
£e=
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This implies that

G (wn) (n) — / sup (€ hg) dv <5>’

E (h.g)e¥(&pp)
</
]

Proof of Theorem 3.1. By (B.10), \/ﬁ(qun — ¢p) ~ L% (Gp + Qo), where L,(Gp + Qo)
is tight as shown in the proof of Lemma 3.1. By Lemma B.11, M(6p,) - M(op) almost

™S (@P(Wn) + T;1¢n) (f) - sup (0 (57 h, g)
(h,g)e¥(&,0P)

dv (€)= o(1).

uniformly, and hence this convergence is also in outer probability by Lemma 1.9.3(ii) of
van der Vaart and Wellner (1996). By Lemma 1.10.2(iii) of van der Vaart and Wellner
(1996), M(op,) ~» M(op). By Example 1.4.7 (Slutsky’s lemma) of van der Vaart and
Wellner (1996), we have that (v/n(¢p, — ¢p), M(6p,)) ~ (Lp(Gp 4+ Qo), M(ap)). Let
(X(EXHXG)T = {p € 1°(ExHXG) : ||1/1]|oo < c0}. Define amap f : £°(HxG) x> (= x
HxG)T = (°(ExHxG) by fp,) = /v forall (p,1)) € L2°(H x G) x {X(Ex H x G)*.
Clearly, (L'»(Gp + Qo), M(op)) takes its values in (*°(H x G) x {*(E x H x G)*. Itis easy
to show that f is continuous under the metric ||(p,¢) — (&', )| = |l — @ lloo + 1% — ¥ || co-
By Theorem 1.3.6 (continuous mapping) of van der Vaart and Wellner (1996),

Vi(op, —¢p)  Lp(Gp+ Qo) '

F(n(bp, —dp), M(6p,)) = M@Gp) . M(op)

By Lemma B.13, we have that Z o S (¢pp/M (6p,)) = 0. Then by Theorem A.2(ii) and
Lemma B.15, together with the continuity of Z o Sy ¢ ,,,,) under || - ||, we have

o, op wTo L (Gp + Qo)
ﬁ{IOS(Mm))_IO‘S(M(&pn))} Lo Suion (Liilopy ) ®29

By Lemma B.11, 7;,/n — A(P) almost uniformly. Then by Lemmas 1.9.3(ii) and 1.10.2(jii),
Example 1.4.7 (Slutsky’s lemma), and Theorem 1.3.6 (continuous mapping) of van der
Vaart and Wellner (1996), together with (B.29), we have that

Tn @ZA)Pn G
? . \/E{IOS </\/l (6‘pn)>} WIOS\P({,Q&P) (./\/l(O'P)> 5

where G = \/A(P)L,(Gp+Qo) as in Lemma 3.1. By Lemma B.13, we have that U(¢, pp) =
V4. g defined by (24) for all £ € = under the assumptions. =

Remark B.3 If the H in (13) is true with Q = P, for all n, we have that S (¢p/M(op)) =0
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(see Lemma B.13). Thus it suffices to find the asymptotic distribution of

op, _ op, op
VnZ o Syxg (M(&Pn)> = \/ﬁ{IoS (M(3Pn)> —ZoS (M(Up))}‘ (B.30)

If we can find the asymptotic distribution of \/n(¢p, /M(6p,) — dp/M(cop)) and the “deriva-
tive” of T o S (see, for example, the definition of Hadamard directional derivative in Shapiro
(1990) and Fang and Santos (2018)), then by the delta method of Fang and Santos (2018),
it is straightforward to obtain the asymptotic distribution of (B.30). However, establish-
ing the limiting distribution of \/n(¢p, /M (6p,) — ¢p/M(cp)) is technically tricky. By
the constructions of ¢p and op, we can view ¢p/M(op) as a map of P. Specifically, let
Vo={v:iv=h-gorv=h? g forsomeh € Hand g, € Gk} and Dg = {Q € {*(VoUGk) :
Q(h - g)/Q(g) and Q(h? - 9,)/Q(q)) exist for all h € H and g; € Gx}. Then we extend the
definitions of ¢g and og for all Q) € P, that is, the ¢¢ defined in (12) and the o¢ defined in
(17), to all Q € Dg. Clearly, P C D¢ by (11). Defineamap T : Dg — ((E x H x G) by

for all Q@ € Dg and (£,h,g9) € = x H x G. Now we have that T(P) = ¢p/M(op) and
T(P,) = ¢p, /M(6p,). Suppose we have weak convergence of \/n(P, — P) in some suitable
space. Then if T is Hadamard (directionally) differentiable, by delta method we can establish
weak convergence of

¢2Pn ¢P o Ay
Vi (M(&pn) B M(ap)> =vn (T(Pn> T(P)) : (B.31)

Unfortunately, however, T is nondifferentiable, because of the nondifferentiability of the M
defined in (21) (M is not differentiable even when = is a singleton), and hence it is not
straightforward to show the convergence of /n(T(P,)—T (P)). Inspired by Kitagawa (2015),
with the asymptotic distribution of \/n(¢p, /M (6p,) — ¢p/M(6p,)) (Which can be obtained
by using Slutsky’s theorem), we can instead establish the asymptotic distribution of

p, 7o ¢p
ﬁ{z S(M(&p,») Les (wan))}’ (B:52)

where S (¢pp/M(6p,)) = 0 by Lemma B.13 if the Hy in (13) is true with () = P, for all
n. However, existing delta methods cannot be used to establish the asymptotic distribution of
(B.32) either. Since ¢pp/M(Gp,) is a random element, delta methods such as Theorem 3.9.4
or Theorem 3.9.5 of van der Vaart and Wellner (1996), or Theorem 2.1 of Fang and Santos
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(2018), do not work in this case. To overcome the technical complications due to the random
element ¢pp/M(6p, ), we provide the extended continuous mapping theorem and the extended
delta method elaborated by Theorems A.1 and A.2, respectively.

Proof of Corollary 3.1. By Lemma B.13, ¢p (h,g) < 0 for all (h,g) € H x G, and there
exists (hY, ¢%) € H x G with ¢° = (g9, ¢9) such that ¢p(hY, ¢g°) = 0. First, we show that if
RO = (—1)d “1ax{ayxr, where d € {0,1} and A is a half-closed interval or an open interval,
then for every closed interval B such that B ¢ A, we have that ¢p(h,¢°) = 0 with h =
(- 1px{dyxr- Suppose, by way of contradiction, that A = (a1, az) and B = [b1, ba] with
ar < by, az > by, and ¢p(h, ¢°) < Owith h = (—1)" 1, fayxr- Let hy = (=1)%1(q, 41y x (ay <
and hr = (—1)d * 1(by,a0)x{d} xr- Then by the definition of ¢p,

(h0-g3) P(h®-g9) _ P((h+h+hr)-¢8) P((he+h+hg)-g9)
P(49) P(g?) P(g9) P(g))
= ¢p(h,9°) + ¢p(hr, d°) + op(hr, °).

op(°, g% = L

Since ¢p(h°, g°) = 0 but ¢p(h, ¢°) < 0, we have ¢p(hr,¢°) + ¢p(hg,¢°) > 0. This implies
that either ¢p(hr,¢") > 0 or ¢p(hg,g°) > 0. However, since (hr,g°), (hgr,¢°) € H x G,
Lemma B.13 shows that both ¢p(hr, ¢°) and ¢p(hgr, ¢°) are nonpositive. This is a contra-
diction. When A is a half-closed interval, we can show analogously that the claim is true.
Second, we show that if h° = 1gyxcxr With C = (—o0, ¢) for some ¢ € R, then there is a
sequence of sets Cj, = (—oo, ¢;] with ¢; 1 ¢ such that ¢p(h*, ¢°) = 0 with hF = Irxc, x®- By
assumption, D is a finite set. Under Assumption 3.1, D is a discrete random variable with
D € D under P,. Then D € D under P by Lemma B.11, and the claim holds.

The above results imply that ¥y, g C Uy g, where Wy, is the closure of Wy g in
H x G under pp. By (24) and Lemma B.12, ¥;;, ; = ¥3xg. By Lemma 3.1, G almost surely
has a continuous path under pp. By Lemma B.12, op is continuous under pp. Thus the
Corollary follows from Theorem 3.1 and the continuity of G/M(op) under pp for every
fixed( €E. m

We now introduce the notation for the bootstrap elements. Let (W1, ..., W,,) be a vec-
tor of random multinomial weights independent of {(Y;, D;, Z;)}"_, for all n. As defined in
(14), P, is the empirical measure of an i.i.d. sample {(Yi, D;, Z;)}"_, from probability dis-
tribution P,. Given the sample values, the {(f’z, ﬁi, Zz) »_, introduced in Section 3.1.1 is an
i.i.d. sample from P,. We can write the empirical measure of {(Yi, D;, Zi) »_,, given sam-
ple {(Y;, D, Z)}1_,, as PP = n=1 30 | Whibyv;,,p,,7,)» where d(y, p, 7,y is a Dirac measure
centered at (V;, D;, Z;). Given the ¢£ , TP, and 65 defined in Section 3.1.1, $% /M (68 )
is a map of {(Y;, Dy, Z;, Wpi)}7_; to the space (>~ (2 x H x G).

We follow Section 3.6 of van der Vaart and Wellner (1996) and (40) to define the
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conditional outer expectations. When we compute the outer expectations as in (40), in-
dependence is understood in terms of a product space. Under Assumptions 3.1 and 3.2,
each term (Y;, D;, Z;) of the sequence {(Y;, D;, Z;)};2, has probability distribution P. Let
{(Y;, D;, Z;)}2, be the coordinate projections on the first co coordinates of the product s-
pace ((R*)>, B3, P>) x (W, C, Py ), and let the multinomial vectors IV depend on the last
factor only. For each real-valued map T on ((R®)>, B3, P*°) x (W,C, Py), we can take
(Q1, A1, Py) = ((R?)>®, B33, P®) and (Qg, A2,P2) = (W,C, Pyy) and define a real-valued
map Ej;, [T] on ((R3)>, B3, P>) by

Ey [T1{(Yi, Di, Z0)}24) = E5[TI{(Yi, Di, Zi) }i24) (B.33)

for each sequence {(Y;, D;, Z;)}io; € (R?)™, where F3[T] is defined as in (40). We cal-
1 the left-hand side of (B.33) the conditional outer expectation of 7' given the sequence

{(Y;, Di, Z;)}32,. Since Ejy, [T] is a real-valued map on ((R*)>, Bg3, P*°), we can compute

its outer and inner integrals (expectations) with respect to ((R?)>°, B3, P>°). For simplicity

of notation, we write them as E*[Ey;, [T]] and E,[Ey;,[T]], respectively.
If T({(Y;, Ds, Z;)};2, ,-) is a measurable integrable map on (W, C, Py) for every given
sequence {(Y;, D;, Z;)};2,, we write Eyw [T for Ey;,[T] and call Ew [T|({(Y;, D;, Z;)};=,) the

conditional expectation of 7' given the sequence {(Y;, D;, Z;)}:2

=1

expectation is defined analogously. If D is a metric space with metric d, we define

The conditional inner

BL1 (]D)) = {f :D—-R: HfHoo < 1, ’f (xl) — f(l'z)‘ < d((L‘l,{L'Q) for all xr1,T9 € ID)} .

Lemma B.16 Suppose Assumptions 3.1 and 3.2 hold.

() VTE($E — ép,)/M(68) satisfies

_
sup Ew f(ﬂ(‘ﬁpn ¢P")>]E[f< Go >:|‘%0 (B.34)

FEBL1 (£ (ExHXG))

M(68 ) M(op)

in outer probability, where Gy = \/A(P) - L'5(Gp) is tight and Gp is as in Lemma B.10;
@) TE(SF, — ép.)/M(6F,) ~ Go/M(op);®

(iii) For each continuous, bounded f : (®(Z x H x G) = R, f(\/TB(¢% — ép,)/M(5E )
is a measurable function of {W,,;}' , for every given sequence {(Y;, D;, Z;)}3°,.

Proof of Lemma B.16. (i). To explore the conditional property of the bootstrap element

8This implies that \/TB (¢, — ép,)/M(6E, ) is asymptotically measurable jointly in {(V, D;, Z;)}:°, and
W by Lemma 1.3.8 of van der Vaart and Wellner (1996).
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VTB(¢E — ép,)/M(68 ), we consider the entire sequence {(Y;, D;, Z;)}:2,.” Each term
(Yi, D;, Z;) in {(Y;, D, Z;) };2, has probability distribution P under Assumptions 3.1 and
3.2. Now the P, defined in (14) can be viewed as being computed with the first n elements
of {(Vi, D;, Z;)}3°, that are distributed according to P. By Lemma B.5, \/n(P, — P) ~ Gp
under P, where Gp is the limit shown in Lemma B.10. By the construction of V in (B.3),
F = 1is an envelope function of V and P*(sup, .y [v — P(v)[*) < oo, where P* is the outer
probability measure of P. By Lemma B.5, V is Donsker. By Theorem 3.6.2 of van der Vaart
and Wellner (1996), we have that

sup | Ew[f{vn(P) — P)}] - E[f(Gp)]| = 0 (B.35)
JEBL (V)

outer almost surely'® and

Ew[f{vn(P? — P)}] - Ew[f{vn(PF — P,)}.] = 0 (B.36)

almost surely for every f € BL;(¢*°(V)). Here, the asterisks denote the measurable cover
functions with respect to {(Y;, D;, Z;)}3°, and W jointly. Then by Lemmas B.9, B.5, and B.6
in this paper, and Theorem 3.9.13 of van der Vaart and Wellner (1996), we have

sup  |Bwlf{VA(L(BE) - L(B)Y] - EIf(Lp(Gp))]| = 0 (B.37)
JEBL1 (£>°(HxG))

outer almost surely and
Ew[f{vn(L(P}) = L(P)}] = Ewl[f{Vn(L(P)) = L(Pa))}] =0 (B.38)

almost surely for every f € BL1(£*°(H x G)). The outer almost sure convergence in (B.37)
implies that the weak convergence v/n(L(PP) — L(P,)) ~» L5»(Gp) holds for almost every
given sequence {(Y;, D;, Z;)}3°,. By Lemma B.6 in this paper, and Lemmas 1.9.2 and 1.9.3
of van der Vaart and Wellner (1996), we have that || P2 — P, ||, — 0 outer almost surely for
almost every given sequence {(Y;, D;, Z;)}5°,. By Lemma B.6 again, || P, — P||o — 0 for al-
most every sequence {(Y;, D;, Z;)}2°,. Thus now we have that || PF — P||o, < |[P5 =B, |lcc +
| P, — P|los — 0 outer almost surely for almost every given sequence {(Y;, D;, Z;)}2,. This
implies that ||€7]E§n —0p|leo — 0and T2 /n — A(P) outer almost surely for almost every given
sequence {(Y;, D;, Z;)}5°,. This, together with (B.37), and Lemmas 1.9.2(i) and 1.10.2(ii-

“We follow Section 3.6 of van der Vaart and Wellner (1996) to obtain the conditional property of the boot-
strap element \/IT,?(qun — épn)//\/t(&gn) given the entire sequence {(Yi, Dy, Zi)} ;2 ;.

10As discussed in van der Vaart and Wellner (1996, p. 183), f{/n(PF — P,,)} is measurable as a function of
the random weights given the values of the sample. Thus we use the conditional expectation Evw [f {\/ﬁ(lf’f -
P,,)}] in (B.35). Similarly, we use the conditional expectation Ew [f{v/n(L(PF) — £(P,))}] in (B.37).
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i), Example 1.4.7 (Slutsky’s lemma), and Theorem 1.3.6 (continuous mapping) of van der
Vaart and Wellner (1996), implies that \/TB(L(PF) — £(P, 2))/M(GF ) ~» Go/M(op) for
almost every given sequence {(Y;, D;, Z;)}3°;. S1nce G p is tight, Gy is tight by (B.7).

(ii). By (B.38) and Theorem 2.37 of Folland (1999) (Fubini), together with the domi-
nated convergence theorem and Lemma 1.2.1 of van der Vaart and Wellner (1996),

E*[f{Vn(L(BY) = LIP)}Y = EJf{VRL(PY) = L(P,))}] =0 (B.39)

for every f € BL1(¢>°(H x G)). By (B.37), together with the definition of outer almost sure
convergence (Definition 1.9.1(iii) of van der Vaart and Wellner (1996)), we have that for
every function f € BL; (¢ (H x G)),

|Bw [F{VR(L(EY) = LIP)N = E[f (LG = 0 (B.40)

almost surely. Thus by (B.40), together with Lemma 1.2.2(iii) of van der Vaart and Wellner
(1996), we have that

(Bw[f{VA(L(PY) — LB} — ELf(Lp(Gp))]| — 0 (B.41)

almost surely for every f € BL;(/*°(H x G)). By Lemma 1.2.6 (Fubini’s theorem) of van der
Vaart and Wellner (1996),

E*[f{Vn(L(PE) — L(P.)}] > E*[Ew[f{V/n(L(PF) — L(B))}]]
> Eu[f{Vn(L(PP) — L(P)}]. (B.42)

Then by Lemma 1.2.1 of van der Vaart and Wellner (1996) and (B.39), we have that

E*[f{Vn(L(P)) = L)Y = E[(Bw [ {Vn(LB]) = L)) +o(1).  (B.43)

Now with (B.41) we can conclude that

|E*[f{/n(L(BY) = L(P))}] - E[f(Lp(Gp))|
= |E[(Ew[f{Vn(L(PY) = LIL)I)] + o(1) = E[f(Lp(Gp))]]
< E[[(Bw[f{vn(L(BY) = L)) = Blf (Lp(Gp))]] +o(1) = 0
for every f € BL1(¢*°(H x G)), where the equality is from (B.43) and the convergence is by
the dominated convergence theorem together with the almost sure convergence in (B.41).

This implies that /n(L(PF) — £L(P,)) ~ L£»(G p) unconditionally. Similarly, by (B.35) and
(B.36) we can easily show that \/n(P? — P,) ~» G p unconditionally. Thus we can conclude
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that P5 — P, — 0 in outer probability by Lemma 1.10.2(iii) of van der Vaart and Wellner
(1996). By Lemma B.6 in this paper and Lemmas 1.9.3 and 1.2.2(i) of van der Vaart and
Wellner (1996), we have that PP — P in outer probability, and hence 7% /n. — A(P) and
M(&gﬂ) — M(op) in outer probability by Theorem 1.9.5 (continuous mapping) of van der
Vaart and Wellner (1996). By Lemma 1.10.2(iii), Example 1.4.7 (Slutsky’s lemma), and
Theorem 1.3.6 (continuous mapping) of van der Vaart and Wellner (1996), \/ﬁ (E(Pf) -
L(Py))/ M(68 ) ~ Go/M(op) unconditionally. This verifies (ii) of the Lemma.

(iii). This claim holds naturally under our constructions. m

To explore the property of the bootstrap test statistic, we introduce the following nota-
tion. For all sets Ay, Ay C H x G, define d_>H (A1, A2) = sup,e 4, infyea, pp (a,b) and

— —
dr (Ay, Az) = max {dH (A1, Az) . dy (A2,A1)} :
Also, define

QZA)Pn (h’g)
M(ap,) (€osh, 9)

\Il/gx\g:{(h,g)eﬁxg:\/ﬁ

< Tn} ; (B.44)

where £, and 7,, are as in (27). Notice the difference between \IJ/HX\g in (27) and \Il/gx\g in
(B.44). Clearly, \I’/Hx\g C Vyng-

Lemma B.17 Under Assumptions 3.1 and 3.2, if the Hy in (13) is true with Q = P, for all n,
then dH(\If/g\Xg, V.g) — 0 in outer probability, where V4, ; is defined as in (24).

Proof of Lemma B.17. First, under the assumptions, we have that for all £ > 0,
lim P* (dg (W, Ting) > €) < 1 P (Wi \Tggg # 2)
L ( H( HxGr ¥ HXG €)= HxG\ ¥ HXG

< lim P* ( sup  V1In > Tn> .

qun (h7g) - ¢P (hvg)
(h,g)eHXG
By Lemma 3.1, \/Tn(qun — ¢p) ~ G. By Lemma B.11, 6p, — op almost uniformly, which

50 \ a-Pn (ha g)

implies that 6p, ~ op by Lemmas 1.9.3(ii) and 1.10.2(iii) of van der Vaart and Wellner
(1996). Thus by Example 1.4.7 (Slutsky’s lemma) and Theorem 1.3.6 (continuous map-
ping) of van der Vaart and Wellner (1996),

(Z)Pn (hag) — (Z)P (hvg)
50 \ &Pn (hv g)

sup  1p

(h,9)EHXG

sup
(h,9)EHXG

G (h,g) ‘
50 Vop (hvg) .

_> —_—
Since 7, — oo, we have that limy, o0 P*(du(Vsyg, Yixg) > €) = 0.
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. - .
Next, consider dg (¥4, g, Vgxg) Define

d((hg),A)= il pp ((h,g9). (W.,d))

for all (h,g) € H x G and all subsets A C H x G. For each ¢ > 0, define

De={(h,9) e HxG:d((h,g),Viyg) =¢}.

The product space H x G is compact under pp by Lemma B.8. Suppose {(hn,gn)}, C D,
such that (hy,, g,) — (h, g) for some (h,g) € H x G. Then

d((h,g), Uy, o) =  inf h.g),(h.g
(( 79)7 ng) (h',g%rEl‘InggpP (( 79) ) ( » g ))
Z inf PP ((hn,gn), (h’/ag/)) _pP((huQ)v(hmgn)) Z € —pp ((h)g)a(hnmgn))a
(W,9")EY g1 g

which is true for all n. Letting n — oo gives d ((h, g),¥s,g) > ¢. This implies that D, is
closed in # x G, which is compact, and thus D, is compact. If D. = &, then clearly

—_ g —
tim P* (dr7 (Vgng: Vang) > <)

n—oo

= lim P* ( sup inf op ((h,g) , (h',g/)) > 5) =0.

n—oo — h/’ / E‘I”
(hg)eliy, g M9V

If D, # @, then there is a §. > 0 such that inf(h 9)eD. |op (h,g)| > dc, since ¢p is continuous
by Lemma B.12. Also, 6p, is uniformly bounded in (h, g) and w, so there is a 6. > 0 such
that for all w € Q, inf, \ p \op (h,g)/ (€0 V ép, (h,g))| > 6. Thus if D. # @, we have

—
lim P (dr (Vg W) > )

n—oo

= lim P* sup inf pp ((h,g),(W,g")) >«
N
I _¢p(hg) '
T n—oo o opy, (h.9)
SUP () e\ W V17 gov&pn<h,g)’ S Ta

By Lemma B.11, we have that gZ; p, — ¢p almost uniformly. Thus there is a measurable set
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A with P(A) > 1 — e such that for sufficiently large n,

I O L
(h9)e¥ 5 6\ ¥sxg §oVap, (h.g) ()T o\ W1 &Vap, (h,9) 2
uniformly on A. Thus we now have that
— f—
ILm P (dH (\Ilﬁxgv\l/ﬂxg) > 5)
. _¢p(hyg) /
< lim P* ( {Sup(hﬂg)e‘l’ﬁxg\‘l’ﬂxg §0V?Pn(h79)‘ > 5‘2} ) + P(A)
o _ _dpy(hg)
" {Sup(h’g)e‘l’ﬁxg\‘l’ﬁxg VI 50V<”7pn(h,g)‘ = Tn} n4
!/ ~

< lim P* &é< sup \/?"W STL te=¢,

B "2 el | T |50V IR, (h,9)| — vn

because 7,,/v/n — 0 as n — co. Here, ¢ can be arbitrarily small. m

Proof of Theorem 3.2. (i). Fix ¢y € C (2 x H x G) under the pgj 4 defined in (B.23). It is
easy to show that ZxH x G is compact under pp,, and thus 1 is uniformly continuous on = x
H x G. This implies that for every € > 0, thereisa § > 0 such that |(¢/, 1, ¢') — ¢ (€, h, g)| <
e/v(E) for all (&, h,g), (&, 1, g") € ExH x G with pepg((€', 1, d'), (&, h,g)) < 4. Also, by
the constructions of ¥, ; in (24) and \If/g\xg in (B.44), we have that

ZoS

s 91050
<v(Z) sup W (& n'g") =¥ (& h, 9)} -

p&hg((glvhlzg/)7(€7hvg))§dH (lIZ:L\XQV\I}'HXQ>

By Lemma B.17, this implies that

P* (‘IOS

Viixg

()~ ToSu,,, (¢)‘ > 5) <P (dH (\ﬂx\g \Ifgxg) > 5) 0.
Notice that
ZoSg— 1) —ToSg— (¥2) | <v(E) Y1 — ¥2ll

for all ¥y, € £ (2 x H x G). By Lemma S.3.6 of Fang and Santos (2018), Z o S\I/—Ag
H X
satisfies Assumption 4 of Fang and Santos (2018). Together with Lemma B.16, by repeating

the proof of Theorem 3.2 of Fang and Santos (2018) with GZ = /TB (q@fﬁn —ép.)/ M(68 ),
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where GZ replaces G, in their notation, we can show that

o | BV (B L e
o] s oS (st

in outer probability, where Gy is the limit obtained in Lemma B.16 and G/ M (op) is tight by
Lemma B.16(i). Since the sample is finite, that is, we have only finitely many observations
{(Y;, Dy, Z;)}}_, in the data set, by the constructions of m in (27) and \Il/ﬂ\xg in (B.44)
we have that

ToS T (08, on) =ToS 7 (%, ~on) B.46
° OFrxg M(5E) — T g M(68) - B9
Then (B.45) and (B.46) imply that
VTE (9% —éspn)> H
E ZoS— | V—7s~—~
sup v [f{ Vrxg ( M(5E,) -0 (B.47)

fEBL1(R) ~F [f {IOS‘quxg (%) H

in outer probability. Let /" denote the CDF of Z 0 Sy, . (Go/M (op)), and define E, by

(@(éggm)) _

Yyxg

F,(0)=P|ZoS8 - Vi, Dy, Zi)Y2, | M
(c) ( M(E) {( )} )

Since by assumption F' is continuous and increasing at ¢;_,, by a proof similar to that
of Theorem S.1.1 of Fang and Santos (2018) together with (B.47) in this paper, we can
conclude that for each € > 0,

P*(|61_a — Cl—a‘ > 8) — 0. (B.48)

By the definitions of G (in the proof of Lemma 3.1) and G (in Lemma B.16), together
with the linearity of £/,, we have that G = Go + A(P)/2L (Qo). Let H,, = \/n(P, — P).
By Lemma B.10, ||H,, — Qo|/cc — 0 as n — oco. Notice that P, = P + n~'/2H,,. By Lemma

"This conditional probability given {(Y;, D;, Z;)}5°, is numerically equal to that given {(Y;, D;, Z;)}7_, in
(31).
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B.9, we have that

L(P,) (h, i):/f (P)(h9) _ pr (20 (h g)‘

lim sup
n—oo (h,g)

E\I/gxg

L(P+nY2H),) (h,g) — L (P) (h, ,
< lim  sup ( n 2(1/29) P) (h,9) — Lp (Qo) (h, 9)

=00 (h,g)eHXG

=0. (B.49)

By construction, £(P) = 0 on V4, because L(P) = ¢p. By assumption, we have that
L(P,) = ¢p, < 0on ¥y, and (B.49) implies that L},(Qo) < 0 on ¥y, ;. Thus we have
that G < Gy and Z o Sy, (G/M(op)) < Z o Sy, . (Go/M(op)). Since G/M (op) €
(> (2 x H x G), where (> (Z x H x G) is a Banach space under |||, and G is tight by
Lemma 3.1, we have that G/ M (op) is tight (hence separable!?) and is Radon by Theorem
7.1.7 of Bogachev (2007). Since Z o Sy fixg is continuous and convex, Theorem 11.1(i)
of Davydov et al. (1998) implies that the CDF of Z o Sy, . (G/M (op)) is everywhere
continuous except possibly at the point

ro = inf {r P (IoSq,ﬁXg (G/M(op)) < r) > O} .
Because Z o Sy, . (G/M(op)) <L oSy, (Go/M(op)), we have that
ro < inf {’I“ P <IOS\I/;;X9 (Go/ M (op)) < r) > O} < Cl_qa,

where the last inequality follows from that the CDF of Zo Sy, , (Go/M (op)) is continuous
and increasing at ¢;—,. This implies that the CDF of Zo Sy, (G/M (op)) is continuous at
¢1—«- Now by (25) and (B.48) in this paper, together with Example 1.4.7 (Slutsky’s lemma),
Theorem 1.3.6 (continuous mapping), and Theorem 1.3.4(vi) of van der Vaart and Wellner
(1996), we conclude that

tin P (VB0 (555 ) ) =2 (7o (7)) <

(B.50)

where the inequality follows from that ¢;_, is the 1 —a quantile for Zo Sy, (Go/M(op)).

If, in addition, P, = P for all n, then by Assumption 3.2 we have that vy = 0 and hence

Qo = 0. This implies that G = G and that the inequality in (B.50) holds with equality.
(ii). Let ¢ _,, be the bootstrap critical value obtained using the bootstrap test statistic

ZoS(VTE(9P, — dp,)/M(6F,)) in place of T o Sg— (\/TF(OF, — dp,)/M(68,)) in the

12gee the definition of separability in van der Vaart and Wellner (1996, p. 17). The closure of a separable
subset of a metric space is separable.
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test procedure in Section 3.1.1. By arguments similar to those in the proof of part (i), we
can show that ¢;_, — ¢|_,, in outer probability, where ¢} _, is the 1 — « quantile for 7 o
S (Go/M (cop)).1? Clearly, &, > é_ by construction. By Lemma B.11, ¢p, /M (6p,) —
¢p/M (op) in £ (2 x H x G) almost uniformly, and hence almost uniformly

¢p,

op
IOSHXQ <M (&Pn)) _>IOS’H><Q <j\/l(0‘1:))> > 0,

where the inequality follows from the assumption that the Hj in (13) is false with @ = P.
Thus we have that [Z o Syxg(vTnép, /M (6p,))]"" — 0 almost uniformly (7},/n — A(P)
almost uniformly by Lemma B.11). By Lemmas 1.9.3(ii) and 1.10.2(iii), Example 1.4.7
(Slutsky’s lemma), and Theorems 1.3.6 (continuous mapping) and 1.3.4(vi) of van der
Vaart and Wellner (1996), we now conclude that

T?’L ) ~ * Tn ) n A~/
P* (IOSHXQ (/\m) > Cla) >P (IOSHXQ (%) > Cl—a) — 1.

C Additional Monte Carlo Studies

The Monte Carlo experiments discussed in this section followed the design of Kitagawa
(2015), where the treatment and the instrument were both binary, with D € {0,1} and
Z € {0,1}, and we compared our results with theirs. We simulated the limiting rejection
rates using the approach proposed in the present paper and that proposed by Kitagawa
(2015) with the same randomly generated data. In this special case, if the measure v
is set to be a Dirac measure, the asymptotic distribution of the test statistic under null
can be written as sup . r+ G u(f)/(&Vou(f))in (32). Since the test proposed by Kitagawa
(2015) constructed the critical value based on the upper bound sup e 7, Gu(f)/(§ V ou(f))
in (32), to show the power improvement of the proposed test on a finite sample more
clearly, we constructed the critical value using sup . 7 G a(f)/(&Vou(f)) instead of Z o
S, (G/M(op)), which is equivalent to it in distribution. That is, we approximated
Gy and oy by G2 and oZ following the bootstrap method of Kitagawa (2015). Then
we estimated F; by j-'g‘ in a way similar to (27), which is the key difference between our
approach and that of Kitagawa (2015). Last, we constructed the bootstrap test statistic

Here, we implicitly assume that the CDF of ZoS (Go/M (op)) is continuous and strictly increasing at ¢ _,.
Theorem 11.1 of Davydov et al. (1998) implies that the CDF of Z o S (Go/M (o p)) is differentiable and has a
positive derivative everywhere except at countably many points in its support, provided that Zo S (Go/ M (op))
is not a constant. By construction, Z o S (Go/M (op)) is not a constant in general cases.
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from sup feF GB(f)/(€ Vv oB(f)) and used it to create the critical value. Because of .7-"2‘,
our bootstrap test statistic can approximate the null distribution consistently and the power
of the test can be improved. This new bootstrap test statistic is asymptotically equivalent to
that in (30), and the new critical value is asymptotically equivalent to ¢;_,, in Section 3.1.1.

Each simulation consisted of 1000 Monte Carlo iterations and 1000 bootstrap iterations.
For each DGP, the measure v was set to a Dirac measure centered at £ = 0.07, 0.22, 0.3, and
1. The nominal significance level o was set to 0.05.

C.1 Size Control and Tuning Parameter Selection

We first ran simulations to investigate the size of the test and the selection of the tuning
parameter. As suggested in Section 4, for sample sizes less than 3000, we can use 7,, = 2
for the tuning parameter. In this set of simulations, we set n = 2000 and 7,, = 1,2, 3,4, co.
For the DGP, we used U ~ Unif(0,1), V' ~ Unif(0,1), Nog ~ N(0,1), Ny ~ N(1,1), Z =
U < 05}, Dy = {V < 05}, D; = 1{V < 05}, D = ! _1{Z = 2} x D, and
Y = chlzo 1{D = d} x Ny, where U, V, Ny, and N; were mutually independent. This DGP
is equivalent to that used by Kitagawa (2015) to show the size control of their test. The
results in Table 4 confirmed the conclusion from Table 1: For 7,, = 2, the rejection rates
were close to those for 7,, = co and close to the nominal size. Recall that a smaller tuning
parameter 7,, yields greater power for the test. Thus we kept using 7, = 2 in this case.

Table 4: Rejection Rates under Hy for Binary D and Binary Z

§
0.07 022 0.3 1

1 0.077 0.052 0.048 0.069
2 0.058 0.048 0.040 0.067
3 0.056 0.046 0.040 0.067
4
00

Tn

0.056 0.046 0.040 0.067
0.056 0.046 0.040 0.067

C.2 Power Comparison

Four DGPs were considered for the power comparisons. The sample sizes were set to n =
200, 600, 1000, 1100, and 2000, and the tuning parameter was set to 7,, = 2. The probability
P(Z =1) =ry, withr, =1/2,1/6,1/2, 1/11, and 1/2 for the corresponding sample sizes.
We let U ~ Unif(0,1), V ~ Unif(0,1), W ~ Unif(0,1), Z = 1{U < r,}, Do = 1{V < 0.45},
Dy = 1{V <055}, D =3!_1{Z = 2} x D,, Noo ~ N(0,1), No; ~ N(0,1), and Ny; ~
N(0,1).
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(1): Nig~N(=0.7,1)and Y = 3! 1{Z = 2} x (X4, 1{D = d} x Ng,).

(2): Nig ~N(0,1.675%) and Y = 3! 1{Z = 2} x (Xho 1{D = d} x Nu.).

(3): Nig ~N(0,0.515%?) and Y = 3! 1{Z = 2} x (o 1{D = d} x Nu.).

(4): Nigg ~ N(—1,0.1252), Nigp ~ N(—0.5,0.125%), N1g. ~ N(0,0.1252),

Nigg ~ N(0.5,0.1252), Nige ~ N(1,0.1252), Nig = 1{W < 0.15} x Ny + 1{0.15 <
W < 0.35} X Nygp+1{0.35 < W < 0.65} X Nqo.+1{0.65 < W < 0.85} x Nygg+ 1{W >

0.85} X Nige, and Y = Y21 1{Z = 2} x (3} 1{D = d} x Ng,).

All the variables U, V', Nyg, N1, No1, and N7; were set to be mutually independent for each
DGP. Table 5 shows a comparison of the powers of the two tests. The results suggest that
the proposed test achieves a manifest power improvement over that of Kitagawa (2015).

Table 5: Rejection Rates under H; for Binary D and Binary Z

DGP

The Proposed Test

Test of Kitagawa (2015)

3

§

0.07

0.22

0.3

1

0.07

0.22

0.3

1

(1)

200
600
1000
1100
2000

0.202
0.300
0.874
0.309
0.997

0.198
0.434
0.915
0.493
0.999

0.186
0.418
0.919
0.452
1.000

0.110
0.180
0.804
0.163
0.997

0.198
0.240
0.855
0.263
0.996

0.193
0.406
0.883
0.451
0.999

0.182
0.375
0.894
0.423
0.999

0.106
0.144
0.714
0.153
0.993

(2)

200
600
1000
1100
2000

0.105
0.261
0.907
0.255
1.000

0.095
0.141
0.814
0.129
0.996

0.059
0.045
0.500
0.037
0.949

0.004
0.000
0.105
0.001
0.674

0.090
0.242
0.887
0.224
1.000

0.084
0.100
0.781
0.082
0.994

0.046
0.026
0.421
0.022
0.909

0.003
0.000
0.030
0.001
0.252

(3)

200
600
1000
1100
2000

0.211
0.203
0.664
0.229
0.950

0.209
0.427
0.769
0.442
0.982

0.202
0.473
0.816
0.487
0.992

0.211
0.351
0.831
0.341
0.995

0.185
0.191
0.654
0.203
0.949

0.188
0.377
0.739
0.399
0.971

0.195
0.458
0.785
0.443
0.987

0.205
0.331
0.796
0.321
0.992

4

200
600
1000
1100
2000

0.080
0.134
0.307
0.146
0.660

0.082
0.117
0.306
0.115
0.703

0.073
0.103
0.224
0.112
0.556

0.036
0.060
0.127
0.031
0.325

0.079
0.123
0.307
0.136
0.649

0.082
0.111
0.281
0.115
0.673

0.073
0.102
0.212
0.093
0.505

0.036
0.058
0.116
0.027
0.271
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