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1 Introduction

A war of attrition occurs when a group of people ‘battle’ for a limited number of prizes. Prizes are awarded

only after some of the participants give in. The theories of war of attrition have been applied in many areas,

including the provision of public goods (Bliss and Nalebuff, 1984; Kambe, 2019), natural oligopolies (Fu-

denberg and Tirole, 1986; Bulow and Klemperer, 1999; Levin and Peck, 2003), committee voting (Dion et

al. 2016; Meyer-ter-Vehn, Smith, and Bognar, 2018; Kwiek, Marreiros, and Vlassopoulos, 2019), bargain-

ing (Abreu and Gul, 2000; Dixit and Olson, 2000), and territorial disputes (Bar-Siman-Tov, 1980; Sorby,

2017).

Although there is a large body of literature in the area, war of attrition games with more than two players

and complete information remain understudied. This paper hopes to fill this gap. I consider a standard war

of attrition game in which N heterogeneous players compete for N −K prizes. The game ends when K

players exit and the other N −K players each win a prize. I first consider the case with K = 1, called the

‘base model’, and then consider that with 2 ≤ K ≤ N −1. An intuitive approach is adopted to find a strictly

mixed strategy equilibrium for the game. The model allows studying problems that cannot arise when there

are only two players, for example, K ≥ 2 or players’ valuations of prizes may depend on which other players

exit.

Much of the literature on war of attrition with complete information has focused on two-player games.

Smith (1974, 213) describes an ‘evolutionary stable strategy (ESS)’ equilibrium for a symmetric war of

attrition game between two fighting animals. The ESS strategy follows an exponential distribution. Bishop

and Cannings (1978) extend Smith’s model to one that allows for more general rewards and cost functions.

Restrictions on the length of the contest are also permitted. Their symmetric two-player game has no ESS

equilibrium or a unique ESS equilibrium. Hendricks, Weiss, and Wilson (1988) consider a more general

two-player game with complete information, allowing for asymmetric players. The conditions for different

types of equilibria are described. Due to the exceptional generality, the ‘nondegenerate equilibrium’ of
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the game is not explicitly characterized, which makes it less convenient to observe the implications of the

equilibrium.

Some recent papers examine the applications of the theory of war of attrition under complete information.

Gul and Pesendorfer (2012) consider a ‘war of information’, in which two parties with opposing interests

provide costly information to voters who choose a policy. The flow of information is continuous and stops

when both sides withdraw. The parties are uncertain about the voters’ utility from the proposed policy,

but they observe a signal, a Brownian motion with a state-dependent drift. They find that increasing one

party’s cost actually makes that party provide more information and therefore that party is more likely to

win. Georgiadis, Kim, and Kwon (2022) consider a war of attrition between two oligopolists under complete

information. Time is continuous and values are discounted exponentially. They show that if the players’

payoffs whilst in ‘war’ vary stochastically and their exit payoffs are heterogeneous, the game admits Markov

Perfect equilibria in pure strategies only.

A war of attrition may be similar to an all-pay auction. Krishna and Morgan (1996, 344, footnote 2)

suggest that a war of attrition can be described as a ‘second-price all-pay auction’ and an all-pay auction as

a ‘first-price all-pay auction’. Baye, Kovenock, and de Vries (1996) study a first-price all-pay auction with

complete information, in which n bidders bid for one object. The game has no pure strategy equilibrium

but has many mixed strategy equilibria. The findings of our model can be applied to an all-pay auction with

ascending bids (or ‘all-pay Japanese auction’) with complete information.

There is a large literature on war of attrition with incomplete information. Nalebuff and Riley (1985)

consider a two-player war of attrition with constant costs per period of staying in the game and private

information in valuation. They show that the game has a continuum of asymmetric equilibria in general.

Fudenberg and Tirole (1986) analyse the strategic exit of firms in a duopoly, in which values are discounted

exponentially. The fixed costs or opportunity costs of the firms are privately known. They show that when

each firm’s costs can be low enough with some probability that staying in the market forever is a dominant
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strategy, the model has a unique equilibrium. Bliss and Nalebuff (1984) model an ex-ante symmetric game

in which multiple individuals decide when to take the initiative and supply a public good. The value of

the public good is discounted exponentially. The costs of supplying the good are private information. The

analysis can be viewed as an application of the Revelation Principle in mechanism design and the Revenue

Equivalence Theorem in auction theory. Bulow and Klemperer (1999) offer a more general (but still ex-ante

symmetric) model in which N+K firms compete for N prizes. The firms’ valuations of the prizes are private

information. Staying in the game incurs constant costs for the firms. The analyses help to explain how long

it takes to form a winning coalition. Solving the model is also facilitated by the Revenue Equivalence

Theorem.

There are many other studies of the game with incomplete information. To name just a few, Krishna

and Morgan (1996) study the war of attrition and all-pay auction with N bidders and one object, when the

bidders’ signals are affiliated and symmetrically distributed; Hörner and Sahuguet (2011) study a two-player

war of attrition with private valuations and endogenous effort levels; Meyer-ter-Vehn, Smith, and Bognar

(2018) consider the ‘conversational war of attrition’ between two biased jurors; and Chen and Ishida (2021)

extend a two-player game with incomplete information by incorporating experimentation, i.e., each player’s

type may change over time as a result of learning-by-doing.

War of attrition games usually have many equilibria. It may help to choose between many equilibria by

assuming that there is a small probability that the players are irrational. Kornhauser, Rubinstein, and Wilson

(1989) consider a two-player ‘concession game’ (with discrete time and alternate moves). An irrational

mixed strategy for each player is included in the game. They find that the approach may select a unique

equilibrium in which the ‘weaker’ player exits immediately. A player is said to be ‘weaker’ either if he is

more impatient or if his irrational strategy is to wait (in any period) with higher probability. Abreu and Gul

(2000) investigate the influence of bargaining ‘postures’ on bilateral bargaining outcomes, in which players

could be irrationally obstinate. One finding is that the delay and inefficiency disappear as the probability of
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irrationality goes to zero. Kambe (2019) studies an N-player war of attrition game in which the players could

be ‘noncompromising’. The paper examines which player is likely to exit and when the war of attrition ends

quickly.

The rest of this paper proceeds as follows. Section 2 presents a standard war of attrition model in which

N ≥ 2 players compete for N −K prizes. Subsection 2.1 considers the base model in which K = 1 and

the players’ valuations of the prizes are fixed. A mixed strategy equilibrium with memoryless strategies

is explicitly characterized and a uniqueness theorem is presented. Subsection 2.2 considers the case with

2 ≤ K ≤ N − 1. It shows that when the players are about equally strong, the game has nondegenerate

equilibria in which K − 1 of the players exit immediately. Section 3 discusses two extensions of the base

model. In Subsection 3.1, the winners’ valuations of the prizes depend on which player loses. A closed-form

mixed strategy equilibrium with memoryless strategies, if it exists, can still be derived. In Subsection 3.2,

the players may be forced out of the game due to randomly arriving ‘defeats’. Section 4 concludes the paper.

2 The Model

In a war of attrition with continuous and infinite time horizon, N ≥ 2 risk-neutral players compete for N−K

homogeneous prizes, with 1 ≤ K ≤ N − 1. When exactly K players exit, each of the other N −K players

wins a prize and the game ends. Player i’s valuation of the prize is Vi > 0. Write V⃗ ≡ (V1, . . . ,VN). Player

i’s cost of staying in the game is ci > 0 per period. Write c⃗ ≡ (c1, . . . ,cN). The players stop paying the costs

once they exit or the game ends. Values are not discounted over time. All information is public. The game is

denoted by (N,N − k,V⃗ , c⃗). Without loss of generality, suppose V1
c1

≥ ·· · ≥ VN
cN

. I use the ratio Vi
ci

to measure

the ‘strength’ of player i in the game. Hence, player 1 is assumed to be the strongest one, and player N is

the weakest one.

The players must decide when to exit. A pure strategy of a player is represented by a time t ∈ [0,+∞),
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at which the player exits conditional on the game not having ended yet. A mixed strategy is represented

by a cumulative distribution on [0,+∞). The player taking the strategy draws a time from the distribution

and exits at that time conditional on the game not having ended then. All players simultaneously decide

their strategies. As in Hendricks, Weiss, and Wilson (1988), the game considered here is of ‘reduced normal

form’, since the strategies may not fully describe the players’ possible plans upon reaching time t. I will

consider the ‘base model’ (N,N −1,V⃗ , c⃗) first, and then extend the results to (N,N −K,V⃗ , c⃗).

2.1 N players compete for N −1 prizes

The game (N,N − 1,V⃗ , c⃗) can be viewed as a typical public good provision game. It has many degenerate

war of attrition equilibria, in which one of the players exits immediately and the others commit to waiting

for a sufficiently long time. For example, pure strategy profile (t1, . . . , tN) with ti = 0 for an i ∈ {1, . . . ,N},

and t j ≥ Vi
ci

for all j ̸= i, is a Nash equilibrium of the game. In the equilibrium, the players other than i

‘threaten’ to wait for a sufficiently long time, and therefore render immediate exit optimal for player i. The

game ends immediately and no attrition occurs. It is possible for a relatively strong player to lose the game

in the equilibria.

In a nondegenerate war of attrition equilibria, the players adopt strictly mixed strategies. Since the game

is defined on a time horizon, each player should constantly update his beliefs about the other players’ future

moves as the game proceeds. Only when the players’ strategies follow exponential distributions, which are

‘memoryless’ over time, is updating unnecessary. Since the game (N,N − 1,V⃗ , c⃗) physically remains the

same at any point of time before it ends, we may conjecture that the game has an equilibrium with memory-

less strategies. I characterize a candidate equilibrium of the game assuming the players adopt memoryless

strategies, and then show it is indeed an equilibrium. The cumulative distribution function of an exponential

distribution on [0,+∞) can be written as Fλ(x) = 1− e−λx, with λ > 0. The basic properties of the distribu-

tion are summarized in following lemma.
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Lemma 1. If independent random variables x̃1 and x̃2 follow exponential distributions Fλ1(·) and Fλ2(·),

respectively, then

(i) E(x̃i) =
1
λi
, i ∈ {1,2};

(ii) Prob(x̃i > x+ y|x̃i > x) = Prob(x̃i > y), for x,y ≥ 0;

(iii) Prob(x̃i ≤ x̃ j) =
λi

λi+λ j
, i, j ∈ {1,2}, i ̸= j;

(iv) Variable z̃ ≡ min{x̃1, x̃2} f ollows cumulative distribution Fλ1+λ2(x).

Nondegenerate war of attrition equilibrium

For simplicity, I denote a mixed strategy with exponential distribution Fλ(·) by the ‘rate parameter’ λ.

A larger λ represents a ‘softer’ strategy, which means the player is less patient in playing the game and

more likely to lose. A mixed strategy profile of the game is then represented by λ⃗ ≡ (λ1, . . . ,λN). Given

the other players’ strategies λ−i, player i faces a suppositional ‘player’ with strategy ∑
n=−i

λn (Lemma 1(iv)).

His probability of losing the game is λi(
N
∑

n=1
λn)

−1 (Lemma 1(iii)), and the expected duration of the game is

(
N
∑

n=−i
λn)

−1 (Lemma 1(i & iv)). All players have the same expected waiting time in the game, regardless

of whether they win or lose. Hence, player i’s strategy λi is the solution of problem

max
λi≥0

ui(λi) = [1−λi(
N

∑
n=1

λn)
−1]Vi − (

N

∑
n=1

λn)
−1ci.

The first-order derivative of the objective function is

u
′
i(λi) = (

N

∑
n=1

λn)
−2[−( ∑

n=−i
λn)Vi + ci].

which implies

u
′
i(λi)> 0 if ( ∑

n=−i
λn)Vi < ci,

u
′
i(λi) = 0 if ( ∑

n=−i
λn)Vi = ci,
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u
′
i(λi)< 0 if ( ∑

n=−i
λn)Vi > ci,

In words, ui(λi) is strictly increasing when ( ∑
n=−i

λn)Vi < ci, and is strictly decreasing when ( ∑
n=−i

λn)Vi > ci,

It is constant when ( ∑
n=−i

λn)Vi = ci. Hence player i’s ‘reaction function’ λi(λ−i) is

λi(λ−i)



=+∞ if ( ∑
n=−i

λn)Vi < ci,

∈ [0,+∞) if ( ∑
n=−i

λn)Vi = ci, i = 1, . . . ,N

= 0 if ( ∑
n=−i

λn)Vi > ci.

Hence, a nondegenerate war of attrition equilibrium with memoryless strategies is possible only when

( ∑
n=−i

λn)Vi = ci, which implies

N

∑
n=1

λn =
1

N −1

N

∑
n=1

cn

Vn
and λ

∗
i =

1
N −1

(
N

∑
n=1

cn

Vn
)− ci

Vi
, i = 1, . . . ,N.

Given the suppositional player –i’s mixed strategy ∑
n=−i

λn, player i is indifferent to any exponential mixed

strategy. The following proposition shows that player i is also indifferent to any pure strategy t ∈ [0,+∞).

Proposition 1. The game (N,N−1,V⃗ , c⃗) has a nondegenerate mixed strategy equilibrium λ⃗∗ ≡ (λ∗
1, . . . ,λ

∗
N)

with

λ
∗
i =

1
N −1

(
N

∑
n=1

cn

Vn
)− ci

Vi
, i = 1, . . . ,N.

conditional on λ⃗∗
1 > 0⃗. All players obtain zero expected payoffs in the equilibrium.

Proof. Assuming the players adopt mixed strategies with exponential distributions, a nondegenerate mixed

strategy equilibrium λ⃗ must satisfy ( ∑
n=−i

λn)Vi = ci, i = 1, . . . ,N, as shown previously. The candidate

equilibrium strategies can be solved from them, which are the (λ∗
1, . . . ,λ

∗
N) stated in the proposition. Since

the support of an exponential strategy is [0,+∞), we need to show that given the other players’ strategies

λ⃗∗
−i, player i ∈ {1, . . . ,N} is indifferent to any pure strategy t ∈ [0,+∞).
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Indeed, under strategy profile λ⃗∗, player i faces a suppositional ‘player −i’ with strategy ∑
n=−i

λn = ci
Vi

(Lemma 1(iv)). Player i’s payoff from pure strategy t ∈ [0,+∞) is

∫ t

0
(Vi − xci)dFci

Vi
(x)− (1−Fci

Vi
(t))tci

=ViFci
Vi
(t)− [tciFci

Vi
(t)− ci

∫ t

0
Fci

Vi
(x)dx]− [tci − tciFci

Vi
(t)]

=Vi(1− e−
ci
Vi

t
)− tciFci

Vi
(t)+ ci(t +

Vi

ci
e−

ci
Vi

t − Vi

ci
)− tci + tciFci

Vi
(t)

= 0.

Hence, λ⃗∗ is a mixed strategy equilibrium of the game and the equilibrium payoffs of the players are all

zero. ■

The equilibrium described in Proposition 1 is a subgame perfect equilibrium. Since all strategies are

completely memoryless and the game ends immediately when one of the players moves, no player has an

incentive to adjust his strategy over the course of the game. More specifically, the strategies truncated at

any point in time remain the same strategies because they follow exponential distributions. In contrast, the

pure-strategy equilibria mentioned previously may contain non-credible threats.

There is a notable difference between the cases with N = 2 and N ⩾ 3 in the equilibrium described in

Proposition 1. When N = 2, (λ∗
1,λ

∗
2) = ( c2

V2
, c1

V1
)> 0, which is always a valid mixed strategy equilibrium. But

when N ⩾ 3, λ∗
i may be nonpositive when ci

Vi
is too large. In other words, the equilibrium exists only when

the weakest players are not too weak.

Proposition 1 demonstrates a value-destroying mechanism in strategic interaction with complete informa-

tion. Although the players have different strengths, they all receive expected payoffs of zero. This finding

defies the common sense that a stronger player should be in a more favourable position in a ‘battle’. It should

be noted that the war of attrition game considered here is different from Benoit’s (1984) ‘deep pocket’ game,

in which a financially strapped player may quickly succumb because he expects to lose eventually. The fol-
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lowing corollary is straightforward from proposition 1.

Corollary 1. In the nondegenerate mixed strategy equilibrium λ⃗∗ of the game (N,N −1,V⃗ , c⃗),

(i) λ∗
1 ≥ . . .λ∗

N , i.e., a weaker player is ‘tougher’ in playing the game;

(ii) The probability for player i to win the game is

1− λ∗
i

N
∑

n=1
λ∗

n

= (N −1)(
N

∑
n=1

cn

Vn
)−1 ci

Vi
, i ∈ {1, . . . ,N}.

Hence, a weaker player is more likely to win the war of attrition.

(iii) The duration of the game, denoted T ∗, follows an exponential distribution with rate

λ
∗ ≡

N

∑
n=1

λ
∗
n =

1
N −1

(
N

∑
n=1

cn

Vn
).

The expected duration of the game E(T ∗) = 1
λ∗ .

Corollary 1(i) can be understood intuitively. Given the equilibrium strategies of the other players, a player

must be indifferent to exit now or ∆t later. The player balances the additional cost of remaining in the game

against the expected benefit of winning the game in the ∆t period. As the cost of remaining in the game is

relatively high for a weaker player, the probability of winning the game in the ∆t period must also be high.

But the latter is only possible if the other (relatively stronger) players behave softer in the game. Therefore,

a stronger player must choose a softer strategy in the nondegenerate equilibrium, and vice versa.

The counter-intuitive outcome can also be found in the literature. In Dixit and Shapiro’s (1986) market

entry game with perfect information and discrete rounds, firms that have not yet entered a market decide

whether to enter at each round. Levin and Peck (2003) show that Dixit and Shapiro’s (1986) model typically

has firms with higher entry costs mix with a higher probability of entry than those with lower entry costs

(Proposition 8 in Levin and Peck (2003, 547)).
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The example below shows that in the market exit game of a ‘natural oligopoly,’ a more efficient firm may

be more likely to exit an unprofitable industry. It also illustrates the possibility that the equilibrium presented

in Proposition 1 may not exist when there are more than two players.

Example 1. There are three firms in a market for a homogeneous product. The firms have the same marginal

cost, but different fixed costs (per period). After a permanent negative demand shock, the market can only

accommodate two firms, i.e., one of them must exit the market before the other two firms regain profitability.

A war of attrition is invoked to determine which firm exits. As they have different fixed costs, these firms

lose money at different rates before the war ends.

Specifically, let the firms’ marginal costs be zero and fixed costs per period be f1 = 39, f2 = 40, and

f3 = 41, respectively. The market demand is P = 24−Q per period after the demand shock. The firms

compete by simultaneously choosing output quantities, conditional on staying in the market. If all three

firms are in the market, one can check that the equilibrium price is 6 and each firm’s gross profit per period

is π̃3 = 36 < 39. If only two firms are in the market, the equilibrium price is 8 and each firm’s gross profit

per period is π̃2 = 64 > 41.

The firms’ net losses per period are (c1,c2,c3) = (3,4,5) during the war of attrition. Conditional on

winning, the firms’ net profits are (π1,π2,π3) = (25,24,23) per period after the war. Assume that the

winning firms’ discounted permanent profits are proportional to the net profits per period. The ‘strengths’ of

the firms in the war of attrition can be represented by (π1
c1
, π2

c2
, π3

c3
) = (8.33,6,4.6). The most efficient firm, 1,

is the strongest one in the game. According to Proposition 1, the nondegenerate equilibrium mixed-strategies

prescribed in Proposition 1 are

(λ∗
1,λ

∗
2,λ

∗
3) = (0.132,0.085,0.035).
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The firms’ probabilities of exiting the market are

λ∗
1

λ∗
1 +λ∗

2 +λ∗
3
= 0.524,

λ∗
2

λ∗
1 +λ∗

2 +λ∗
3
= 0.339, and

λ∗
3

λ∗
1 +λ∗

2 +λ∗
3
= 0.137,

respectively. Hence, the most efficient firm 1 has the highest probability of exiting the market in the war of

attrition.

One can check that the consumer surplus during the war of attrition is 162 per period, and the social

welfare is 162− 3− 4− 5 = 150 per period. The ‘post-war’ consumer surplus is 128 per period, and the

social welfare may be 128+ 24+ 23 = 175, 128+ 25+ 23 = 176, or 128+ 25+ 24 = 177 per period,

depending on which firm exits. From the social welfare perspective, the first-best outcome is for firm 3

to exit immediately, thus achieving social welfare of 177 per period immediately. The war of attrition not

only creates a ‘war period’ with low social welfare (which is 150), but also tends to create a less efficient

‘post-war’ outcome.

If the firms’ fixed costs were f1 = 61, f2 = 62, and f3 = 63 respectively, the firms would lose (c1,c2,c3) =

(25,26,27) per period during the war of attrition, and earn net profits per period (π1,π2,π3) = (3,2,1) after

the war. Therefore,

(λ∗
1,λ

∗
2,λ

∗
3) = (15.83,11.17,−2.833).

It cannot be an equilibrium strategy profile because λ∗
3 < 0. In this case, the game does not have an equilib-

rium as described in Proposition 1. ■

In a war of attrition with private valuations, a player typically chooses a tougher strategy when his (pri-

vately known) valuation is higher (Bliss and Nalebuff, 1984; Bulow and Klemperer, 1999). The finding does

not conflict with ours that a player chooses a softer strategy when his (publicly known) valuation is higher.

The two findings tell different stories. The first one is about how a player’s strategy ‘vertically’ depends

on his own possible type, whilst the second is about how a player’s strategy ‘horizontally’ depends on his
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relative strength compared to other players. In a war of attrition with incomplete information, it is possible

for a stronger player to behave softer. The following example illustrates this possibility.

Example 2. Consider a war of attrition in which three players compete for two prizes. They all value

the prize at V . Player 1’s cost per period c1 ∈ {cL
1 ,c

H
1 }, cL

1 < cH
1 , is his private information, with

Prob(c1 = cL
1) = 1− p and Prob(c1 = cH

1 ) = p ∈ (0,1).

Players 2 and 3’s costs per period are c2 and c3, respectively, which are publicly known.

The game has a Perfect Bayesian Nash Equilibrium with exponential mixed strategies (λ1(cL
1),λ1(cH

1 ),λ2,λ3),

in which

λ1(cL
1) =

1
2V

(c2 + c3 − cL
1), λ1(cH

1 ) = +∞,

λ2 =
1

2V
(cL

1 + c3 − c2), and λ3 =
1

2V
(cL

1 + c2 − c3)

If player 1 is the high-cost type, he exits immediately, which happens with probability p. Otherwise, all

players adopt the strategy specified in Proposition 1. Note that if player 1 is the high-cost type, the strategies

of players 2 and 3 induce player 1 to exit immediately. In equilibrium, player 1 receives an expected payoff

of zero. Players 2 and 3 each receive a positive expected payoff pV . ■

Example 2 has some interesting implications. First, when cL
1 < cH

1 < c2 (or cL
1 < cH

1 < c3), player 1 is

certainly stronger than player 2 (or 3). But in the proposed equilibrium, player 1 either exits immediately

or adopts a softer strategy λ1(cL
1) > λ2 (or λ1(cL

1) > λ3). Second, private information may not benefit the

players who own it. On the contrary, it may benefit those who do not own it. A prerequisite, of course, is

that the information asymmetry itself is common knowledge. Third, the presence of private information may

weaken the war of attrition and lead to an increase in the total surplus of the players. The nondegenerate

war of attrition equilibrium described in Proposition 1 represents a ‘perfect’ mechanism that eliminates all
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possible surpluses in a strategic interaction. Even information asymmetries can thwart the ‘perfection’ and

raise the total surplus.

Corollary 1(iii) implies that the war of attrition lasts longer when the players become stronger, which is

reasonable as it takes more time to deplete more potential surpluses. Another related issue is how the ex-

pected duration of the game varies as the number of players increases. When there are more players, there is

a stronger incentive to wait for others to drop out, which tends to prolong the duration of the game. However,

as the game can be ended by more players, the duration of the game may also be shortened. Corollary 1(iii)

shows that if we fix the ‘harmonic mean’ H ≡ N/(
N
∑

n=1

cn
Vn
) of the players’ strengths, the expected duration of

the game, (1− 1
N )H, increases with the number of players and approaches the harmonic mean.

Partially degenerate equilibria

The game (N,N −1,V⃗ , c⃗) has many equilibria in which the nondegenerate war of attrition only occurs with

a probability. Suppose the equilibrium λ⃗∗ = (λ∗
1, . . . ,λ

∗
N) described in Proposition 1 exists. Consider the fol-

lowing strategy profile. One of the players, say i ∈ {1, . . . ,N}, exits immediately with probability p ∈ (0,1)

and chooses the exponential strategy λ∗
i with probability 1− p. All other players, i.e., j ̸= i, choose the expo-

nential strategy λ∗
j respectively. We can check that the strategies also constitute a Nash equilibrium. Player

i receives a zero expected payoff and player j ̸= i receives a positive expected payoff pVj in the equilibrium.

I call them ‘partially degenerate equilibria’.

Similar to a finding of Hendricks, Weiss, and Wilson (1988), any ‘accessible’ mass point in the strategies

of an equilibrium of the game (N,N −K,V⃗ , c⃗) must be at t = 0. ‘Accessible’ here means that the point

in time could be reached during the course of the game. If a mass point only serves as a threat, it is not

accessible in equilibrium. Suppose t ∈ (0,+∞) is an accessible mass point in the support of player i’s mixed

strategy. No other players would exit in interval [t − ε, t], with ε > 0 small enough, because it is worthwhile

to wait for the possible exit of player i at t. Since no other player would exit in [t − ε, t], player i can do
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strictly better by moving the mass point from t to t − ε. Hence, t > 0 cannot be an accessible mass point in

player i’s mixed strategy.

Moreover, in the game (N,N − 1,V⃗ , c⃗), there cannot be two or more players who exit with strictly pos-

itive probability at t = 0. Otherwise, one of them has an incentive to hold on a second so that he can take

advantage of the possible exit of the others. Similarly, we can show that in the game (N,N −K,V⃗ , c⃗), it is

not possible to have K +1 or more players exit with strictly positive probabilities at t = 0. I summarize the

two results mentioned above in the following lemma.

Lemma 2. In the war of attrition game (N,N−K,V⃗ , c⃗), any accessible mass point in equilibrium strategies

must be at t = 0. And, it is impossible to have K +1 or more players exit with strictly positive probabilities

at t = 0.

Uniqueness

It can be shown that if the mixed strategy equilibrium described in Proposition 1 exists, then it is the only

equilibrium provided that the players’ strategies follow atomless distributions over the entire time horizon.

Proposition 2. If atomless cumulative distributions G1, . . . ,GN with supports of [0,+∞) constitute a mixed

strategy equilibrium of the game (N,N −1,V⃗ , c⃗), then

Gi(x) = 1− e
−[ 1

N−1 (
N
∑

n=1

cn
Vn

)− ci
Vi
]x
= Fλ

∗
i (x), i = 1, . . . ,N.

Proof. With the equilibrium strategy profile (G1, . . . ,GN), given the others’ strategies, player i ∈ {1, . . . ,N}
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faces a suppositional ‘rival’ whose strategy is represented by distribution

G−i(x) = 1− ∏
n=−i

(1−Gn(x)) = 1−

N
∏

n=1
(1−Gn(x))

1−Gi(x)
, x ∈ [0,+∞).

Player i should be indifferent to any pure strategy t ∈ [0,+∞), i.e.,

∫ t

0
(Vi − cix)dG−i(x)− (1−G−i(t))tci =C, t ∈ [0,+∞)

where C stands for a constant. Differentiating both sides of the equation with respect to t, it becomes

G
′
−i(t)Vi − [1−G−i(t)]ci = 0, for t ∈ [0,+∞), i.e.,

(1−G−i(t))
′

(1−G−i(t))
=− ci

Vi
, for t ∈ [0,+∞).

Since the distributions are atomless, we have G−i(0) = 0. The differential equation implies

Gi(x) = 1− e−
ci
Vi

x
, for x ∈ Ai,

i.e., the suppositional player −i must adopt an exponential strategy with rate ci
Vi

. Hence,

1−

N
∏

n=1
(1−Gn(x))

1−Gi(x)
= 1− e−

ci
Vi

x
, i = 1, . . . ,N.

From the N equations above, we have

Gi(x) = 1− e
−[ 1

N−1 (
N
∑

n=1

cn
Vn

)− ci
Vi
]x
= Fλ

∗
i (x), i = 1, . . . ,N.

Therefore, all players must adopt mixed strategies with exponential distributions, and the equilibrium strat-

egy profile is exactly the (λ∗
1, . . . ,λ

∗
N) given in Proposition 1. ■

Proposition 2 can be viewed as a generalisation of Smith’s (1974, 214) analysis on the ESS equilibrium.

It establishes the uniqueness of the nondegenerate war of attrition equilibrium provided that the strategies

have atomless distributions and support [0,+∞). The proposition also offers a direct method for finding the

nondegenerate war of attrition equilibrium. This paper proposes a more intuitive way to do this. The idea

may be applied to other stationary dynamic games.
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2.2 N players compete for N −K prizes

The game (N,N −K,V⃗ , c⃗), with K ≥ 2, also has many pure-strategy equilibria, in which K players exit im-

mediately and the others commit to waiting long enough. With mixed strategies, the game may reach a point

at which exactly N−K+1 players remain, at which point the subgame fits the base model. We can imagine

possible equilibria of the game in which K−1 players exit immediately and the remaining N−K+1 players

choose the mixed strategies described in Proposition 1 or the associated partially degenerate equilibria. For

these strategies to constitute a Nash equilibrium, two conditions must be satisfied: first, the subgame of the

last N−K+1 players has an equilibrium described in Proposition 1; second, among the K−1 early quitters,

none has an incentive to deviate. If a player is far stronger than all the others, immediate exit may not be his

best strategy.

Proposition 3. In the game (N,N − k,V⃗ , c⃗), with N ≥ 3 and 2 ≤ k ≤ N −1, suppose that the k−1 earliest

quitters do not include all the strongest players, and that the subgame of the remaining N − k+ 1 players

have an equilibrium as described by Proposition 1. Then, the game has an equilibrium in which the k− 1

earliest quitters quit at the beginning of the game.

Proof. First, after exactly k−1 players have exited, at least one of the remaining N − k+1 players expect

a zero payoff in the nondegenerate or partially degenerate equilibria of the subgame (Proposition 1). If the

earliest k−1 quitters do not exit at the beginning of the game, then at least one of the remaining N − k+1

players will receive a negative expected payoff, which cannot happen in equilibrium. Therefore, the earliest

k−1 exits must occur at the very beginning of the game.

Second, if one of the earliest quitters deviates to a pure strategy t > 0, he wins only if two players with

the exponential mixed strategies exit before t. Such a deviation is more profitable for a stronger player.
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Since the earliest quitters do not include all the strongest players, in the subgame of N −K + 1 players,

even the strongest player’s expected payoff is zero from any pure strategy. Furthermore, waiting for two

independent exits takes more expected time (and costs) than waiting for one. Hence, the above deviation

cannot be profitable, even for one of the strongest players. ■

Proposition 3 suggests that the game (N,N −K,V⃗ , c⃗) may immediately shrink to a game with N −K +

1 players competing for N − K prizes, which fits the base model. Thus, one can characterize a set of

nondegenerate or partially degenerate war of attrition equilibria for the game. The condition that not all

the strongest players are among the earliest K − 1 quitters is a sufficient but not necessary condition for

equilibrium. In particular, if all players are almost equally strong, then the K − 1 early quitters can be

randomly chosen from the N players.

Proposition 3 is similar to a conclusion of Bulow and Klemperer (1999). In their (ex-ante symmetric)

model, N +K firms with private information on valuation compete for N prizes through a war of attrition.

In their ‘natural oligarchy’ setting, Bulow and Klemperer show that K −1 firms with the lowest valuations

immediately drop out, leaving N +1 firms to battle for the N prizes. In our model, N heterogeneous players

compete for N −K prizes under symmetric information. The game may have strictly mixed strategy equi-

libria in which K−1 players immediately drop out, leaving N−K+1 players to battle for the N−K prizes.

The players who exit immediately are not necessarily those with the lowest valuations (or the ‘weakest’

players).

The intuition behind the findings is different. Bulow and Klemperer (1999, 181) explain the intuition in

terms of marginal analysis. Specifically, when K > 1 exits are still required for the game to end and a player

is within ε of his planned dropout time, the player’s cost of waiting as planned is of order ε, but his benefit

from winning the game during that period is of order εK . So, for small ε he will prefer to exit now rather than

wait, which means delay is possible only when one exit is required for the game to end. In our game with
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the proposed mixed strategy equilibria, when the game reaches the stage in which one more exit is needed

to end the game, at least one player who remains in the game expects zero payoff at that point in time. The

game must reach this stage immediately; otherwise, there is a player who ends up with a negative expected

payoff, which cannot happen in an equilibrium of the game.

All-pay Japanese auction with complete information

Our model can be applied to an all-pay auction with ascending bids, which I call ‘all-pay Japanese auction’.

Suppose there are N bidders and N − K objects. The bidders’ valuations of the objects are V1, . . . ,VN ,

respectively, with V1 ≥ ·· · ≥ VN > 0. Information is complete. In the auction, an auctioneer increases

the open bid from zero. A bidder can exit the ongoing auction by paying the current bid without winning

anything. Once K bidders exit, the auction ends and each of the other N −K bidders wins an object at the

stop price.

A pure strategy of a bidder in the all-pay Japanese auction is represented by an exit price, and a mixed

strategy is represented by a cumulative distribution on [0,+∞). It is easy to see that the social optimal and

revenue maximising allocation entails bidders 1, . . . ,N−K winning the objects. The corresponding revenue

is
N−K
∑

n=1
Vn. The auction has many pure strategy equilibria, in which K of the bidders exit immediately.

In the auction game with K = 1, one can show that a mixed strategy equilibrium with exponential strate-

gies can be solved from

( ∑
n=−i

λn)Vi = 1, i = 1, . . . ,N,

which implies

λ
∗
i =

1
N −1

(
N

∑
n=1

1
Vn

)− 1
Vi
, i = 1, . . . ,N.

Even if the open bid has exceeded the player’s valuation, a bidder may not give up, as it is better to win a

prize at a high price than to lose it at the same price.

A bidder with a lower valuation is more likely to win an object in the auction. All bidders receive an
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expected surplus of zero. According to Corollary 1(iii), the expected stop bid is (N − 1)/(
N
∑

n=1

1
Vn
). If we

denote the ‘harmonic mean’ of the players’ valuations by Ṽ = N/(
N
∑

n=1

1
Vn
), the expected stop bid is N−1

N Ṽ .

Since all bidders must pay the bid, the expected revenue from the auction is (N−1)Ṽ . As long as the bidders

are heterogeneous, the equilibrium outcome is neither Pareto optimal nor revenue maximising, as the good

may not be allocated to the bidder with the highest valuation.The auction also has many partially degenerate

equilibria where one of the bidders gives up with a positive probability at the start of the auction; otherwise,

all bidders follow the mixed strategies mentioned above.

We can apply Proposition 3 to the all-paying Japanese auction in which K ≥ 2. In addition to the obvious

pure strategy equilibria, the auction may have many strictly mixed strategy equilibria, in which K−1 bidders

exit immediately and the other bidders adopt the nondegenerate or partially degenerate mixed strategies

described previously. In particular, if there is only one object for sale, the auction may immediately shrink

to a game between two players.

3 Extensions

This section discusses two extensions of the base model. The first one is that a player’s valuation of the

prize depends on which other player drops out. This can only happen if the game has three or more players.

For example, in an exit game in a ‘natural oligopoly’, the winners’ profits may depend on which firms exit.

The second extension is that there is some random exogenous event that may cause a player to exit the game

early (Asako, 2015). For example, an animal in a fight may be forced to submit due to an unexpected injury.

In an exit game, an outside option that appears unexpectedly may induce a firm to quit early.
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3.1 Interdependent valuations

In the war of attrition game in which N players compete for N−1 prizes, suppose player i’s valuation of the

prize, conditional on player j ̸= i, exits and is Vi j > 0. We define a matrix U by

U ≡



0 V21 . . . V(N−1)1 VN1

V12 0 . . . V(N−1)2 VN2

...
...

. . .
...

V1(N−1) V2(N−1) . . . 0 VN(N−1)

V1N V2N . . . V(N−1)N 0


.

The jth row of the matrix gives the players’ valuations at the exit of player j. In the base model of the

previous section, the valuation matrix degenerates to

U =



0 V2 . . . VN−1 VN

V1 0 . . . VN−1 VN

...
...

. . .
...

V1 V2 . . . 0 VN

V1 V2 . . . VN−1 0


.

The players’ costs per period of staying in the game are still c⃗ ≡ (c1, . . . ,cN). The game with the interde-

pendent valuations is denoted by (N,N −1,U, c⃗).

We still consider the equilibria with exponential strategies. Given strategy profile λ⃗ ≡ (λ1, . . . ,λN), the

probability of ending the game by the exit of player l is λl(
N
∑

n=1
λn)

−1, and the expected duration of the game

is (
N
∑

n=1
λn)

−1. Thus, the optimal strategy for player i is the solution to the following problem

max
λi≥0

ui(λi) = (
N

∑
n=1

λn)
−1(∑

l ̸=i
λlVil − ci).

It follows from the first-order conditions of the problem that if there exists an equilibrium with exponential
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strategies. Thus, the strategies satisfy

∑
l ̸=i

λlVil = ci, i.e., λ⃗ ·U = c⃗.

The solution to the system of equations can be written as

λ⃗
∗ ≡ (λ∗

1, . . . ,λ
∗
N) = (c1, . . . ,cN) ·U−1 = c⃗ ·U−1.

Proposition 4. The war of attrition game with interdependent valuations (N,N − 1,U, c⃗) has a nondegen-

erate mixed strategy equilibrium λ⃗∗ = c⃗ ·U−1, conditional on λ⃗∗ > 0⃗. The expected payoffs to all players in

the equilibrium are zero.

Proof. Since the support of an exponential strategy is [0,+∞), we only need to show that given the other

players’ strategies λ⃗∗
−i, player i is indifferent to any pure strategy t ∈ [0,+∞). Player i faces a suppositional

player with strategy ∑
n=−i

λ∗
n. If player i exits at t, his expected payoff is

∫ t

0
( ∑

l=−i

λ∗
l

∑
n=−i

λ∗
n
Vil − xci)dF ∑

n=−i
λ∗

n
(x)− (1−F ∑

n=−i
λ∗

n
(t))tci

=
∫ t

0

ci

∑
n=−i

λ∗
n

dF ∑
n=−i

λ∗
n
(x)−

∫ t

0
xcidF ∑

n=−i
λ∗

n
(x)− (1−F ∑

n=−i
λ∗

n
(t))tci (since λ⃗ ·U = c⃗)

= F ∑
n=−i

λ∗
n
(t)

ci

∑
n=−i

λ∗
n
− [F ∑

n=−i
λ∗

n
(t)tci − ci

∫ t

0
F ∑

n=−i
λ∗

n
(x)dx]− (1−F ∑

n=−i
λ∗

n
(t))tci

= (1− e
−t ∑

n=−i
λ∗

n
)

ci

∑
n=−i

λ∗
n
+ ci(t +

1
∑

n=−i
λ∗

n
e
−t ∑

n=−i
λ∗

n − 1
∑

n=−i
λ∗

n
)− tci

= 0.

Hence, λ⃗∗ = c⃗ ·U−1 is an equilibrium mixed strategy profile of the game, and the equilibrium payoffs to all

players are zero. ■
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Proposition 4 suggests that interdependence in valuation does not fundamentally affect the nature of the

game. With interdependence, a player’s ‘strength’ cannot be represented by a simple expression. It depends

on his valuations of the prize when different other players exit. The equilibrium strategies are less explicitly

presented, which makes it harder to pronounce the strategies intuitively.

Finally, the game with interdependent valuations also has a set of partially degenerate equilibria. In

such an equilibrium, one of the players, say i ∈ {1, . . . ,N}, exits immediately with probability p ∈ (0,1)

and chooses the exponential strategy λ∗
i (as described in Proposition 4) with probability 1− p. The other

players, j ̸= i, choose the exponential strategy λ∗
j respectively.

3.2 Random defeat

There are often unpredictable events in ‘battles’ that may drive some players out and end the game early.

Asako (2015) offers a short analysis of a two-player war of attrition with complete information and one-

sided ‘defeat’. The timing of the defeat follows an exponential distribution. I extend the idea to a war

of attrition with N players. Moreover, I assume that the defeats may be associated with some additional

payoffs.

In the base model (N,N −1,V⃗ , c⃗), assume that player i may encounter a randomly arriving defeat at time

x with exponential probability density ηie−ηix, ηi > 0. A larger ηi implies that the defeat is more likely

to occur in a given period. Write η⃗ ≡ (η1, . . . ,ηN). The pure strategy equilibria of the game are virtually

unaffected by the possible defeats, since the game ends immediately in those equilibria. Suppose that in the

absence of defeat, the nondegenerate mixed strategy equilibrium of the game is λ⃗∗ = (λ∗
1, . . . ,λ

∗
N). One can

show that the game with defeat has an equilibrium with exponential strategies

λ⃗d = λ⃗∗− η⃗ = (λ∗
1 −η1, . . . ,λ

∗
N −ηN)
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as long as all the components are positive. A player with exponential strategy λ and defeat rate η can be

viewed as a player with strategy λ+η but no defeat risk. The proof is omitted here, as I will present a more

general result later. Thus, when the players face the risk of defeat, they would subjectively behave tougher

in a nondegenerate war of attrition. The expected duration of the game is unaffected since the exits of the

players follow strategies λ⃗d + η⃗ = λ⃗∗.

A defeat in the real world often generates additional payoffs. For example, when an animal in combat

loses due to injury, it suffers a loss in addition to the prize; in the exit game of a natural oligopoly, if a firm

decides to drop out early because an unexpected outside option arises, then the ‘defeat’ yields a positive

payoff. Let Li denote player i ∈ {1, . . . ,N}’s additional ‘loss’ from a defeat. The ‘loss’ could be positive or

negative. Write L⃗ ≡ (L1, . . . ,LN). Denote the game by (N,N −1,V⃗ , c⃗, η⃗, L⃗).

Given the players’ mixed strategies λ1, . . . ,λN and the rates of defeat η1, . . . ,ηN , player i loses the game

if he is the first one to exit or encounter a defeat. Hence, player i’s probability of winning the game is

1− (λn +ηn)(
N

∑
n=1

(λn +ηn))
−1 = [ ∑

n=−i
(λn +ηn)](

N

∑
n=1

(λn +ηn))
−1.

His probability of losing the game by a defeat is ηi(
N
∑

n=1
(λn +ηn))

−1, and the expected duration of the game

is (
N
∑

n=1
(λn +ηn))

−1. Hence, player i’s strategy λi is the solution to problem

max
λi≥0

ui(λi) = {[ ∑
n=−i

(λn +ηn)]Vi −ηiLi − ci}(
N

∑
n=1

(λn +ηn))
−1

The candidate mixed strategy equilibrium with exponential strategies (λ1, . . . ,λN) can be derived from the

first-order conditions, which satisfies

∑
n=−i

(λn +ηn) =
ηiLi + ci

Vi
, i = 1, . . . ,N.

If we view the ‘cost per period’ of player i as ηiLi + ci, and his ‘displayed strategy’ as λi +ηi, the structure

of this system of equations is the virtually same as that without defeat.
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Proposition 5. The war of attrition game with random defeats (N,N − 1,V⃗ , c⃗, η⃗, L⃗) has a nondegenerate

mixed strategy equilibrium λ⃗∗ ≡ (λ∗
1, . . . ,λ

∗
N) in which

λ
∗
i =

1
N −1

(
N

∑
n=1

ηnLn + cn

Vn
)− ηiLi + ci

Vi
−ηi, i = 1, . . . ,N,

conditional on λ⃗∗ > 0⃗. All players receive an expected payoff of zero in the equilibrium.

Proof. From the first order conditions we immediately obtain the λ∗
1, . . . ,λ

∗
N described above. We only need

to show that given the other players’ strategies λ∗
−i, player i is indifferent to any pure strategy t ∈ [0,+∞).

Under strategy profile (λ∗
1, . . . ,λ

∗
N), player i faces a suppositional ‘player’ with strategy ∑

n=−i
(λ∗

n +ηn). To

simplify the exposition, write

γ
∗
i ≡ ∑

n=−i
(λ∗

n +ηn) =
ηiLi + ci

Vi
, i = 1, . . . ,N.

If player i exits at t ∈ [0,+∞), his expected payoff is

∫ t

0
[
γ∗i Vi −ηiLi

γ∗i +ηi
− xci]dFγ∗i +ηi(x)− (1−Fγ∗i +ηi(t))tci

=
∫ t

0

γ∗i Vi −ηiLi

γ∗i +ηi
dFγ∗i +ηi(x)− ci

∫ t

0
xdFγ∗i +ηi(x)− (1−Fγ∗i +ηi(t))tci

= Fγ∗i +ηi(t)
γ∗i Vi −ηiLi

γ∗i +ηi
− ci[tFγ∗i +ηi(t)−

∫ t

0
Fγ∗i +ηi(x)dx]− (1−Fγ∗i +ηi(t))tci

= (1− e−(γ∗i +ηi)t)
γ∗i Vi −ηiLi

γ∗i +ηi
+ ci(t +

e−(γ∗i +ηi)t

γ∗i +ηi
− 1

γ∗i +ηi
)− cit

= (1− e−(γ∗i +ηi)t)
γ∗i Vi − (ηiLi + ci)

γ∗i +ηi

= 0.

Hence, λ⃗∗ is an equilibrium mixed strategy profile of the game, and the players’ expected payoffs are zero

in the equilibrium. ■

We may use ηiLi+ci
Vi

to measure the ‘weakness’ of player i. A player that is too weak may not be able

25



to fight a nondegenerate war of attrition. When the equilibrium described in Proposition 5 exists, player i’s

probability of winning the game in the equilibrium is

[ ∑
n=−i

(λ∗
n +ηn)](

N

∑
n=1

(λ∗
n +ηn))

−1 = (N −1)(
N

∑
n=1

ηnLn + cn

Vn
)−1(

ηiLi + ci

Vi
).

Hence a ‘weaker’ player behaves tougher in the game and is more likely to win. The duration of the game

follows an exponential distribution with a rate of

N

∑
n=1

(λ∗
n +ηn) =

1
N −1

(
N

∑
n=1

ηnLn + cn

Vn
).

Finally, let us take a quick look at the most general case in the current framework. In the war of attrition

game in which N players compete for N − 1 prizes, given the matrix of interdependent valuations U , the

costs per period of staying in the game c1, . . . ,cN , the rates of random defeat η1, . . . ,ηN , and the losses

associated with the defeats L1, . . . ,LN , the Nash equilibrium with exponential strategies is

λ⃗∗ ≡ (λ∗
1, . . . ,λ

∗
N) = (η1L1 + c1, . . . ,ηNLN + cN))U−1 − (η1, . . . ,ηN),

conditional on λ⃗∗ > 0⃗. When there are N players competing for N −k prizes, we may still have a nondegen-

erate equilibrium in which k−1 players exit immediately. The details are omitted here.

4 Conclusions

I consider a standard war of attrition game with complete information, in which N heterogeneous players

compete for N−K prizes. Each player can win at most one prize. A player is said to be ’stronger’ if the ratio

of his valuation of the prize to the cost of staying in the game is higher. In the base model in which K = 1, I

explicitly characterize a subgame perfect mixed strategy equilibrium of the game, in which all players adopt

strategies with exponential distributions. All players receive expected payoffs of zero in the equilibrium.

The equilibrium may not exist when there are three or more players and the weakest player is too weak.
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However, as long as the equilibrium exists, the weaker players behave tougher and are more likely to win.

The equilibrium, if exists, is the unique equilibrium in which the strategies follow atomless distributions and

have supports of the entire time horizon. The game may also have partially degenerate equilibria in which

one of the players exits immediately with positive probability. In the case where K ≥ 2, the game may have

nondegenerate equilibria in which K−1 players exit immediately. The findings can be applied to an ‘all-pay

Japanese auction’ with complete information.

I also considered two extensions of the base model. The first is that players have interdependent valuations

of the prizes, i.e., a player’s valuation of a prize depends on which other player exits. Although there is no

easy way to measure a player’s ‘strength’ in this case, a memoryless mixed strategy equilibrium can still be

characterized. The second is that the players face randomly arriving ‘defeats’. It was found that the players

tend to choose tougher strategies, since random defeat serves as part of their exit decisions. The losses

associated with the defeats also tend to make the players tougher in a nondegenerate war of attrition.

Of the equilibria mentioned in this paper, namely the pure strategy, the partially degenerate, and the

nondegenerate equilibria, the nondegenerate equilibria lead to the ‘fairest’ payoffs. Unfortunately, it is

also the least efficient one. There appears to be a conflict between fairness and efficiency in the game. I

conjecture that the relatively efficient pure strategy equilibria may be infeasible in a society that places a

high value on fairness. This may be a good topic for future research, as it addresses an important issue in a

society where decision-making is decentralised.
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