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Outline of Lecture 2

¢ Brownian motion
e Stochastic integral
e |to's formula
* Feymann-Kac formula
« Stochastic control theory
= Dynamic programming principle
= Hamilton-Jacobi-Bellman (HJB) equation

Definition of Brownian motion

Let (€2, F:, P) be a filtered probability space.

A stochastic process B; adapted to J; is called a (standard) Brownian motion or a Wiener process if it satisfies the
following conditions

e Plw: By(w) =0] =1, i.e., the process starts at zero aimost surely.



e Forany 0 < s < t, the random variable B; — B; is normally distributed with mean 0 and variance t — s, i.e.,
forany a < b,

1 b 2
Pla<B;—Bs <b| = ——— / e 2t-9) de.
\/271'(15—3) a

» B; has independent increment, i.e., forany 0 < t; < ty < --- < t,, the random variables
Bi,, By, — By, -+, By, = By,
are independent.

» Almost all sample paths of B; are continuous functions, i.e.,
Plw : B¢(w) is continuous | = 1

Remark

» A Brownian motion is sometimes defined as a stochastic process satisfying only the first 3 conditions in the
definition. Such a process always has continuous modification by applying Kolmogorov's continuity criterion.
 The standard Brownian motion starts at 0. A Brownian motion starts at  # 0 is obtain by shifting z + B;.

Kolmogorov's continuity criterion

Theorem

A process X, for which there exist three constants «, 3, C' > 0 such that
E[Xtin — X¢|* < CR'FP
for every t and h, has a modification which is almost surely continuous.

For Brownian motion B;, since the random variable By, — By is centered Gaussian with variance h, we have
E [(BHh — Bt)ﬂ = 3h2.

Therefore, by taking o = 4, 8 =1, and C' = 3, the Kolmogorov's continuity criterion applies.

Historical note

Quotes from Wikipedia:

"Brownian motion or pedesis (from Greek: midnoig /pé€.de:sis/ "leaping") is the random motion of particles suspended in a
fluid (a liquid or a gas) resulting from their collision with the quick atoms or molecules in the gas or liquid."

"This transport phenomenon is named after the botanist Robert Brown. In 1827, while looking through a microscope at
particles found in pollen grains in water, he noted that the particles moved through the water but was not able to
determine the mechanisms that caused this motion."

"The first person to describe the mathematics behind Brownian motion was Thorvald N. Thiele in a paper on the method
of least squares published in 1880. This was followed independently by Louis Bachelier in 1900 in his PhD thesis "The
theory of speculation”, in which he presented a stochastic analysis of the stock and option markets. Albert Einstein (in
one of his 1905 papers) and Marian Smoluchowski (1906) brought the solution of the problem to the attention of
physicists, and presented it as a way to indirectly confirm the existence of atoms and molecules. Their equations
describing Brownian motion were subsequently verified by the experimental work of Jean Baptiste Perrin in 1908."



Properties of Brownian motion

The following properties hold for Brownian motion B; .

Time-homogeneity For any s > 0, the process B;.s — B, t > 0 is also a Brownian motion and is independent
of the o-algrebra o( By, u < s).

Symmetry The process —B;, t > 0, is a Brownian motion.

Self-similarity For every ¢ > 0, the process cB; Je2, b 2> 0, is a Brownian motion.

Time inversion The process X defined by Xo = 0, X; =¢B;; fort > 0, is a Brownian motion.

Distributional properties of Brownian motion

Brownian motion is a Gaussian process, it is fully characterized by the mean and the covariance functions.

E [B] =0 forall ¢
cov(Bi, Bs) = min{s, t}

To calculate the covariance, without loss of generality, we assume s < t.

Review: Gaussian process

A stochastic process X; is called a Gaussian process if all its finite dimensional distributions are multivariate normally
distributed. Thus, a Gaussian process is fully characterized by its mean function 1(¢t) = [E [X;] and covariance function
Y(t, 8) = cov(Xy, X5).

Commonly encountered Gaussian processes

Brownian motion

Brownian motion with deterministic drift
Brownian bridge

Ornstein-Uhlenbeck process

fractional Brownian motion

Variation of a function

Let f:[0,7T] - R. Let IT, = {0 =to < t1 < --- < t, = T} be a sequence of partitions of the finite interval [0, T']
and denote ||IL,|| = max{ti —t;—1}. The variation V¢(T') of f in [0, T is defined as

VA(T)= lim Z|ft)—f(tz |

|[TL, =

provided the limit eX|sts.

Remark



An important property for functions of finite variation is that it can be uniquely written as the sum of an increasing function
and a decreasing function.

Quadratic variation and covariation

Let f,g:[0,T] — R. LetII,, = {0 =tp < t; < --- < t, = T} be a sequence of partitions of the finite interval [0, 7’|
and denote ||II,|| = max, {t; — t;_1}.

Quadratic variation

The quadratic variation of f, denoted by [f](T"), in [0, T'] is defined as

[fI(T) = lim Z £ =y

ITL, || —
provided the limit exists.
Quadratic covariation

The quadratic covariation of f and g, denoted by [f, g|(T'), in [0, T'] is defined as

[£,9](T) = lim Z[f — flti-)llg(t:) — g(ti-1)]

[TL, [[ =0 2=
provided the limit exists.
Remark

One can define even higher order variations, say, cubic variation. However, if the variation at some order is finite, all the
higher order variations vanish. For example, the cubic variation of Brownian motion vanishes since it has finite quadratic
variation.

Quadratic variation of Brownian motion

Let Ap, = {a =t < t1 < --- < t, = b} be a partition of a finite interval [a, b]. Then

n

li_>m (B, — B, ) =b—a in L*(Q)
i—1

as ||An|| = lnglfgfz(tZ —t;—1) goes to 0.

In other words, the quadratic variation [B]; of Brownian motion B; in [0, t] is [B]: = t.
Remark

Almost sure convergence is guaranteed if the sequence {A,, } satisfies the condition

A CAyC---CA,C---



o0
Almost sure convergence is also guaranteed when {A,, } satisfies Z [An]] < oo,

n=1

Technical note: Convergence in L

A sequence of random variables X, defined on the probability space (€2, F, IP) is called covergent to X in L? if

lim | X, — X|l, =0 or equivalently lim [| X, — XP] =0

n—oo

where || X||, = \p/IE [| X[P] is the LP-norm of the random variable X.

Remark
Recall that we have the relationship among different types of convergence

in L = in probability = in distribution or weakly

fr

almost surely

Local properties of Brownian paths

Let B; be a Brownian motion.

e B; is locally Holder continuous of order « for every a < %

e The Brownian paths are almost surely of infinite variation on any interval.

» The Brownian paths are almost surely nowhere locally Holder continuous of order « for o > %
« Levy's modulus of continuity. Let h(t) = /2t log(1/t). Then

. B;, — B
P [lim( sup M) =1} =1

e=0 \0<t,<to<lts—t;<e  h(€)

Technical note: Lipschitz and Hoélder continuity

Definition (Lipschitz continuous)

A function f is called Lipschitz or Lipschitz continuous on the interval [a, b] if there exists a constant L such that
|£(¢) — f(s)| < L[t — 5]

forall t,s € [a, b].

Definition (Hélder continuous)

A function f is called Holder continuous of order « on the interval [a, b] if there exists a constant K such that
£(8) — £(s)| < K[t —s*

forall t, s € [a, b].



The Lévy-Ciesielski construction of Brownian motion

Let {4;} be a complete orthonormal basis for L?[0, 1] and &;, i = 1 2, - -+, an iid sequence of standard normal random

variables defined on a probability space (2, F,P). Define ¢;(t fo ¢z )ds, for t € [0, 1]. Then the stochastic
process W defined by

W, = ; &idi(t)

is a Brownian motion.

Paley-Wiener expansion of Brownian motion

The Paley-Wiener representation of a Brownian path in terms of a random Fourier series.
Let &, be an iid sequence of standard normal variables. Then

sin(nt)

B = §0t+\/—Z§n

nm

and

represent a Brownian motion on [0,1].

In [1]: %load_ext rpy2.ipython

In [2]: %%R
# the following function plots the Brownian motion path by the Paley-Wiener expansion
plotBM <- function(N,col="blue")
{
xi@ <- rnorm(1)
xi <- rnorm(N)
W <- function(N) {
if (N==0)
res <- function(t) xio*t
else {
coeff <- xi/(1:N)/pi
res <- function(t) xi@*t + sqrt(2)*sum(coeff*sin(seq(1l:N)*pi*t))

res

viW <- function(t) sapply(t,function(x) W(N)(x))
curve(vW, from=0,to=1,col=col,xlab="t"',ylab="BM")



}

plotBM(20)
plotBM(200,col="red")
plotBM(20000,col="green")
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Donsker's invariance principle

* Donsker's invariance principle is also referred to as the Donsker's theorem.

Suppose {Xi}fi1 is an iid sequence of random variables with mean 0 and and variance 1. Let S,, = ?:1 X;. Define
the function G,, of ¢ by

Gn(t) = % Z;: {si_l +n (t— %) Xi] L 2O

n 'n

S5

L . . . S,
In fact, G,, is simply the linear interpolation of the scaled random walk { ARV I %}

Then, S,, = W as n — oo, where W denotes a Brownian motion.

In other words, as n — 00, the linearly interpolated scaled random walk &,, converges weakly to a Brownian motion.



Technical note: Weak convergence or convergence in distribution

A sequence of random variables X, is called convergent weakly or convergent in distribution to X if it satisfies one of
the following equivalent conditions.

. ILm ox, (u) = ¢px (u) for every u, where ¢ is the characteristic function.
n—oo

. li_>m E [f(X5)] = E [f(X)] for all bounded continuous function f
n—oo

o lim F,(x) = F(x) for every x at which F is continuous. F,, and F' are cdfs of X,, and X respectively.
n—oo

Remark

As opposed to the definition of convergence a.s., in L”, and in probability, in defining weak convergence, the random
variables X,,'s and X need not to be defined on the same probability space.

In [3]: %%R
# Simulate BM by using the Donsker's invariance principle
N <- 1000
nu <- 3
X <- rt(N,df=nu)/sqrt(nu/(nu-2))
BM <- c(0,cumsum(X)/sqrt(N))
t <- c(9,(1:N)/N)
plot(t,BM,type="1",col="blue")
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Simulation of Brownian motion

In [4]: %%R

# the code demonstrates how to simulate Brownian paths

NSim <- le4  # number of samples at each step

NSteps <- 100 # number of steps

Tfin <- 1 # terminal time

B <- matrix(@,NSim,NSteps+l) # initialize the Brownians

# simulation step

for (i in 1:NSteps){
dB <- rnorm(NSim)
dB <- dB - mean(dB) # now dB has mean ©
dB <- dB/sd(dB) # now dB has variance 1
dB <- sqrt(Tfin/NSteps)*dB
B[,i+1] <- B[,i] + dB

t <- (@:NSteps)/NSteps*Tfin
par(mfrow=c(2,2))

# plot a Browian path
plot(t,B[5000,],type="1",col="blue’',ylab="Bt sample path')

# histograms superimposed with normal distributions at different times
hist(B[,100],prob=T,breaks=50,col="blue',ylim=c(0,1.5),xlab="B")
curve(dnorm,col="orange',add=T)
hist(B[,10],prob=T,breaks=25,col="green',add=T)
curve(dnorm(x,sd=1/sqrt(10)),add=T,col="red")

# evolution of mean
plot(t,apply(B,2,FUN=mean),type="1",col="blue',xlab="t"',ylab="mean")
abline(h=0,col="red")

# evolution of standard deviation

plot(t,apply(B,2,FUN=sd),type="1"',col="blue’',xlab="t"',ylab="sd")
curve(sqrt(x),add=T,col="red")

Histogram of B[, 100]
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Brownian motion with drift

Let (€2, F:, P) be a filtered probability space and B; a Brownian motion on €2. A stochastic process X of the form

t
XtZ:E-I-Bt—i-/ ,u,st = dXtZdBt—i-thdt
0

is called a Brownian motion with drift 1 , where p is adapted to the filtration F;.

Remark

» X; is a Gaussian process if u; is deterministic. Apparently, the mean function is £ [Xt] =+ fot sds and
the covariance function (¢, s) = cov(X¢, X5) = min{¢, s}.

e We can always transform a Brownian motion with drift into a standard Brownian motion by change of the
underlying probability measure so long as the drift y; satisfies certain conditions, say, bounded.

Markov process

A stochastic process X; defined on a filtered probability space (Q, Fi, IP’) is a Markov process if, for s > t,
P[X, € A|F] =P[X, € A|X;] V Borel measurable set A.

In words, to determine the probability of the process X in the set A at time s given the information up to time ¢, it
suffices to condition on the position of the process at time ¢. The Markov property can also be written in terms of
conditional expectations as

E[f(X)|F] = E [£(X5)[ Xq]



for all bounded measurable function f.
Typical examples of Markov processes

¢ Random walk (in discrete time)
* Brownian motion

¢ Brownian motion with drift

e Poisson process

Technical note: Poisson process

N; is a called a Poisson process with intensity X if

e Ny = 0 almost surely

» Given0 <t; <ty <---<tp, theincrements N, , N, — Ny ,---, N, — N, | areindependent
e For i=1,2,---,n, the random variable of increment N; — IV; . is Poisson distributed with parameter
)\(ti — tifl).

A is regarded as the expected number of jumps per unit time because E [N, — N; 1] = A(t; —ti-1).
Remark

* We will assume the sample paths of Poisson process is right continuous.
« Var(N; — Ng) = A(t—s)
N E[ezﬁNt] — e)\t(elf—l)

Transition probability and transition density

A Markov process is fully determined by an initial distribution and the transition probability (or density if there exists any).
The transition probability p(s, A|t, z) of a Markov process is defined by

p(s, Alt,z) =P [X, € A|X; = z]

where s >t and A C R is measurable. If the transition probability p is absolutely continuous with respect to the
Lesbegue measure, we refer to the density as the fransition density and denote it by, abusing the use of notation,
p(s,ylt, ). Intuitively,

p(s7 y|t7 LL’) =P [XS = y|Xt = .’13] .

Ideally, we would expect

p(s, Rlt, 2) = / p(s, ylt, @)dy = 1.
R

Chapman-Kolmogorov equation

The transition density p of a Markov process satisfies the Chapman-Kolmogorov equation.



Forand t < u < s, we have

[ p(s, vl s 21t 2)dz = pls, it ).
Intuitively, we can reconcile the Chapman-Kolmogorov equation as

Y P[X, =y Xy =2P[Xy =2/ X; = 2] =P [X, = y|X; = g

Infinitesimal generator

The infinitesimal generator L of a Markov process X is defined by

Lf(z) = lim —{E[f(X)] - (@)} = ~E [£(X))

h—0t h

Examples

2
e The infinitesimal generator of Brownian motion is the Laplacian, i.e., %j—wz. In general, the infinitesimal
generator of diffusion process is a second order differential operator.
e The infinitesimal generator L for the Poisson process NN; with intensity A is the difference operator

Lf(z) = Af(z+1) — f(z)].

Infinitesimal generator for Brownian motion

For Brownian motion, Thus,

Infinitesimal generator for Poisson process

For Poisson process, note that Thus,

Wiener integral

 Let f be a (deterministic) step function defined by f = > " ; a’il[ti,l,ti)' where tg = a and t, = b, a; € R.
The Wiener integral I(f) of f is defined by

b n
I(f) = / f(t)dBt = Z a/iABti, ABtz = Bti — Bti—l .
a =1

o Let f € L?[a,b] and f, be a sequence of step functions such that f, — f in L?[a, b]. The Wiener integral
I(f) of f is defined by

b b
I(f) = / f(t)dB, = lim / fu(t)dB,, in L2(9).

A technical issue here: Is I( f) well-defined?



Wiener integral is normally distributed

Theorem

For each f € L?[a,b], the Wiener integral fab f(t)dB; is a Gaussian random variable with mean 0 and variance
b
|£112 = [.) £2(t)dt. In short,

b
/ £(s)dB, ~ N(0, | ]2).

« In particular, recall that if the integrand f is the step function f(t) = > i, a;1;, . (t), apparently the Wiener
integral I(f) of f is normally distributed

I(f) - zn: aiABi ~ N (O, Zn: a,?At,—)
i=1 i=1

since the AB;'s are independent normal random variables.
« The proof for general f € L?[a, b] is based on limiting process.

Example

Jy sdB, ~ N (0, %)

Corollary

If f, g € L*[a, b], then

E[I(f)I(g)] =E [/ab f(s)dB; Lb g(s)st] = Lb f(t)g(t)dt.

Thus, the Wiener integral I : L?[a, b] — L%*(Q) is an isometry. In particular, if f and g are orthogonal, i.e., fab fg=0,
then the Gaussian random variables I(f) and I(g) are independent.

Properties of Wiener integral

Let f and g be deterministic L2[a, b functions, a and 3 are constants. Then

+ [ laf@)+Bo(®)] dB, = a [} f(t)dB, + 8 [ g(t)dB..
e [P f(t)dB; = [° f(t)dB, + [® f(t)dB,, forc € [a, b].

Integration by parts formula

Let f be a continuous function of bounded variation. Then almost surely

b b
/ F(t)dB. = f(t)B,. ~ / Budf(t).

a

* Note that the integral on the left hand side is in the sense of Wiener, whereas on the right hand side is in the
sense of Riemann-Stietjes.



Example

Determine the distribution of the random variable fol B,dt.

Wiener integral defines a continuous martingale

Let f € Lz[a, b]. Then the stochastic process M; obtained through Wiener integral

¢
M, = / f(s)dBs, a<t<b,

is a martingale with respect to Fs = o(Bs; s < t).

¢ Don't be confused with a continuous time martingale and a continuous martinagle.
e Since Wiener integral defines a Gaussian process, continuity of the process can be obtained by applying
Kolmogorov's continuity criterion.

Technical note: martingale conditions
To show if the process M; is a martingale, we need to verify the three defining conditions

e M; is adapted
o M, is integrable for every t
« Forevery s < t, E [M;|F,;] = M almost surely

An illustrative example for Ito integral

Let's start with defining the simple integral as

t
/ B,dB;.
0

As in the theory of Riemann-Stieltjes integral, we shall start with partitioning the interval [0, t] into, say, n subintervals.
Within each subinterval, we pick a point and evaluate the integrand at that point, multiply that value by the increment of
the integrator in that subinterval. Then we sum up the results from each subinterval and take limit as the mesh of the
partition approaches zero. Possible choices for selecting points from each subinterval may be, denoting
ABtk = Btk — Btk&:

e The right point rule:
n
R,=) ByAB,

k=1
e The left point rule:

n
L,=) By ,AB,
k=1
e The midpoint rule:
te +tr1

n
M, = Z By, ABy,, wheret,= 5

k=1



Which rule rules?

Question: Which rule yields convergent integral? in what sense? We knew that it can't be pathwise because the
integrator, in this case the Brownian motion, is not of finite variation (because it has nonzero second variation) almost
surely.

Note that the following identities hold. Hence, Notice that the first term in both expressions is independent of partitions
and the second term, as we have seen in previous lecture, will converge to the quadratic variation of Brownian motion in
L? as the mesh approaches zero! Consequently,

So we learnt from this simple example that

« The right point rule and the left end point rule yield different "integrals".
« The difference between the "right integral" and the "left integral" is exactly the quadratic variation.
« The convergence is in L? sense.

Remark

We need to stick with one specific rule in order to have convergence.
Ito picked the left end point rule because of adaptivity and martingality.
e L, is a martingale whereas R,, isnt.

The midpoint rule leads to the Stratonovich integral.

Simulation of stochastic integral: left endpoint rule

In [5]: %%R
# Simulate the stochastic integral int f(B) dB from © to t, for t in [0,1]
# Demonstrate the effect of Ito correction/term

NSim <- 1le4  # number of samples at each step

NSteps <- 100 # number of steps

Tfin <- 1 # terminal time

dt <- Tfin/NSteps

f <- function(x) x

B <- matrix(@,NSim,NSteps+l) # initialize the Brownians
dB <- matrix(@,NSim,NSteps+1)

# Simulate Browian paths

for (i in 1:NSteps){
db <- rnorm(NSim)
db <- db - mean(db) # now db has mean ©
db <- db/sd(db) # now db has variance 1
dB[,i] <- sqrt(dt)*db
B[,i+1] <- B[,i] + dB[,1i]



# Calculate the (discretized) stochastic integral using left endpoints

dX <- f(B)*dB
X <- t(apply(dX,1,FUN=cumsum))
t <- (@:NSteps)*dt

# plots
par(mfrow=c(2,2))

# evolution of mean

plot(t,colMeans(X),type="1"',col=

# evolution of variance

'blue’,ylab="mean")

plot(t,apply(X,2,FUN=var),type="'1",col="blue’',ylab="variance of X')

# histogram at terminal time

hist(X[,NSteps],prob=T,col="green',breaks=100)

mean
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Simulation of stochastic integral:

In [6]: %R

0.4

variance of X

AN

right endpoint rule



# What happens if we use right endpoints?

# Calculate the (discretized) stochastic integral using right endpoints
B <- B[,-1]

dB <- dB[,1:NSteps]

dX <- f(B)*dB

X <- t(apply(dX,1,FUN=cumsum))

t <- (1:NSteps)/NSteps*Tfin

# plots
par(mfrow=c(2,2))

# evolution of mean
plot(t,colMeans(X),type="1"',col="blue',ylab="mean")

# evolution of variance
plot(t,apply(X,2,FUN=var),type="1",col="blue',ylab="variance of X')

# histogram at terminal time
hist(X[,NSteps],prob=T,col="green',breaks=100)
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Ito integral of simple processes

Definition (simple process)

A process ; is called simple if it is of the form

or(w) =Y &1(w)ly, (@),
k=1

where {, € F; fork=0,---,n.

» Basically, a simple process is simply a step function with random coefficients that are measurable with respect
to the left endpoints.

* Simple process is defined as such for mimicking a) the step functions in the Wiener integral and b) the left
endpoint rule in the Riemann integral.

* The left endpoint measurability is key to the martingality of Ito integral, as we expected.

Definition (Ito integral of a simple process)

The stochastic integral of a simple process (; with respect to Brownian motion B; over [O, T] is defined by

T n
/ (ptdBt = Z Ek—lABtka where ABtk = Btk — Btk—l’
0 k=1

Integrand for Ito integral

Definition



We will use L2 (€ X [a, b]) to denote the space of all stochastic processes ¢;(w), a < t < b, satisfying

e (o is adapted to the filtration F; .
b 2
. fa E|g0t| dt<OO

In other words, ¢; is adatped and in L?(2 x [a, b]).
Note that, for notational simplicity, we usually omit the reference to the sample space {2 and deonte the space as
L2 [a,b.

adl™?

Lemma

Any Lid process is the L? limit of a sequence of simple processes. Precisely, let Pt € Lid([a, b]). Then there exists a

sequence of simple processes {go,E")} in L2,([a, b]) such that

b
lim E/ |g0£n) — pi|Pdt = 0.

n—o0

In other words, ¢\ — ¢ in L2 ([a,b]).

Properties of Ito integral

Let ¢ € L2, and, for ¢ € [0, T,

t
Xt:/ Sosst
0

be the stochastic integral of (; with respect to Brownian motion B; up to time ¢. Then X} has the following properties.

o Adaptivity: Xy € J; foreach t.
e Martingality: X; is a martingale.
» [to isometry:

t t t
E[Xg]:E/ 0ids e~ EU gosst} :/ E [¢2] ds.
0 0 0

« Quadratic variation: [X; = [;f ¢2ds e~ d[X]; = @2dt.
e Continuity: X; is continuous in ¢ a.s.
e Linearity: Let 9; be another adapted process with [E foT zp? dt < ooand o, € R. Then

2

/Ot(ochs + Pips)dBs = oz/otsosstJrﬂ/Otwsst

Ito processes

Definition

An adapted process X; is called an /to process if it is of the form

¢ t
Xi==z —i—/ o,dB; —l—/ bsds,
0 0



where o; and b, are adapted processes. We also write it in differential form as

dX; = 0¢dB; + bidt, with initial condition Xy = z.

The coefficient b; is referred to as the drift (term) and o; as the diffusion (term) of the Ito process X;.
Lemma

The quadratic variation of the Ito process X is
t
(X = / o2ds «w d[X]; = oldt.
0

Note that

» though the quadratic variation of Brownian motion is deterministic (recall [B]t =1t a.s.), in general the quadratic
variation of an Ito process is stochastic;
» the proof is very similar to that of Brownian and is left as an exercise.

Ito integral with respect to Ito processes
Let X; be an Ito process with drift b; and diffusion o¢, i.e., X; is defined by
t t
Xt =X +/ O'Sst +/ bsds o~y dXt = O'tdBt + btdt, Xo =x.
0 0
and ¢; be an adapted process. We define the stochastic integral of ¢; with respect to X; as

t t t
/ psd X5 = / psosdBs + / psbsds
0 0 0

provided the integrals on the right hand side are defined.

Ito's formula for Brownian motion

Theorem

Let f(¢, x) be a function with continuous partial derivatives f;, f., and f,,. Let W; = Wy + B, be a Brownian motion
starting at Wy (nonrandom). Then, for every 7' > 0,

T T 1
£, W) - 10, W0) = [ e, Woawi + [ [ft(t, W) + 3 fealt W) i
0 0
Or equivalently in differential form
df(t, W) = fo(t, Wi)dW; + lft(t, W) + %f:w(t) Wt)] dt.

Remark

The idea is that we Taylor expand f(¢, W}) to second order then formly apply the following rule:



(dBy)* ~ dt, (dt)?> ~ 0, dBidt~0.

Ito's formula for Ito process

Let f(¢, x) be a function with continuous partial derivatives f;, fz, and fyz. Then for every T' > 0, Or in differential
form

Remark

e Ito's formula natually decomposes f(t, Xt) into a drift/finite variation part plus a diffusion/martingale part;
reminiscent of the Doob decomposition. Processes consist of a finite variation part and a martingale part are
also referred to as semimartingales.

2
¢ Note that the second order differential operator %63 + b;0,, in the drift part is the infinitesimal generator of the
process X;.

Review: Fundamental theorem of calculus and Taylor's theorem

Fundamental theorem of calculus

Let f be a continuously differentiable function. Then
) - 1@ = [ e

Taylor's theorem

For a second differentiable function f, there exists some & between y and x such that
Notice that the equation is exact, however in general it is not possible to specify what £ is.

Applications of Ito's formula I: Evaluating stochastic integral

In classical calculus, we barely evaluate an integral from the definitioin per se, i.e., partition the integrating interval, form
Riemann sum, then take limit as the mesh of the partition approaches zero. Instead, we evaluate an integral by applying
the Fundamental Theorem of Calculus. Though in stochastic calculus the Fundamental Theorem of Calculus does not
really exist, we evaluate stochastic integrals by applying Ito's formula.

Theorem

b B ) 1 b /
[ 1B0as ~FE, - 5 [ £BIa

where F' is an antiderivative of f, i.e., F' = f.

Theorem

b b 1
[ stByis = Fe Bl - [ lﬂ(t,Bt)+§fz(t,Bt) dt,

where F;, = f,i.e., F' is an antiderivative of f with respect to .



» The idea is, we find an antiderivative of f (with respect to x), say, F'; apply Ito's formula to F', then rearrange
terms.

e However, the price we pay is that in general the last (Riemann) integral on the right hand side usually has no
simple analytical expression.

Examples of stochastic integral evaluation

» Evaluate the stochastic integral fot B,dB;.

Note that in this case f(z) = x. Hence an antidrivative of f is F'(z) = %

Apply Ito's formula to F' we have

» Evaluate the stochastic integral fot seP:dB,.
Note that in this case f(t,z) = te”. Hence an antidrivative F' of f is F(t,z) = te”.
Apply Ito's formula to F' we have

Applications of Ito's formula ll: Solving SDEs

A stochastic differenital equation (SDE) is an differential equation with random noise of the form
dXt = ,U,(Xt, t)dt + O'(Xt, t)dBt

In cases, we can solve SDEs by applying Ito's formula to certain function of X;. We demonstrate the technique by
solving the following two very important examples.

e Geometric Brownian motion/Black-Scholes model
dX; = pXidt + 0 X;dB;, where p and o are constants.

To solve it, we apply Ito's formula to log Xj.
e Omstein-Uhlenbeck process/Vasicek model

dX;: = A(m — X;)dt + odBy, where m, A, and o are constants.
To solve it, we apply Ito's formula to e X .

Remark

Geometric Brownian motion and Ornstein-Uhlenbeck process are special cases of the so called linear SDEs which has
the general form

dX: = (1 Xt + po)dt + (01 Xt + 00)dBs.

Such SDEs have "closed form" solutions.

Simulation of the Ornstein-Uhlenbeck process

In [7]: %%R



# The code simulates the OU process dX = lLambda (m - X) dt + sigma dB
# by Euler-Maruyama scheme

# Parameters of the OU process
lambda <- 2

m<- 0

sigma <- 0.2

X0 <- 1

Tfin <- 1

# number of paths and number of time steps
NSim <- 1le3
NSteps <- 100

# initialize X
X <- matrix(@,NSim,NSteps+1)
X[,1] <- x@

# Euler-Maruyama scheme

dt <- Tfin/NSteps

for (i in 1:NSteps){
db <- rnorm(NSim)
db <- db - mean(db) # now db has mean @
db <- db/sd(db) # now db has variance 1

X[,i+1] <- X[,i] + lambda*(m - X[,i])*dt + sigma*sqrt(dt)*db

par(mfrow=c(2,2))

# histograms at different times
hist(X[,2],prob=T,col="green’',breaks=20,xlim=c(-.5,1.2))
hist(X[,NSteps+1],prob=T,col="red',breaks=20,add=T)

# time evolution of mean
t <- (@:NSteps)/NSteps*Tfin
plot(t,colMeans(X),type="1"',col="blue',ylab="mean")

# time evolution of variance

t <- (@:NSteps)/NSteps*Tfin
plot(t,apply(X,2,FUN=var),type="1",col="blue’',ylab="var")
abline(h=sigma~2/2/lambda,col="green')

Histogram of X[, 2]
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Stochastic differential equation

Let (2, F:, IP) be a filtered probability space and W; a Brownian motion defined on it. A stochastic differential equation
(SDE) driven by the Brownian motion W; is an equation of the form

dX; = p(Xy, t)dt + o( Xy, £)dWy, Xo ==

or in integral form

¢ ¢
X =29 —|—/ pu(Xs, s)ds +/ o(Xs, s)dWs.
0 0

As usual, u(z, t) is referred to as the drift part and o(x, t) the diffusion part.

Connection to partial differential equation

Stochastic differential equation provides a way to numerically solve second order parabolic partial differential equations
by Monte Carlo simulation. The key point is a stochastic representation of the solution to partial differential equations
which we develop in the following.

Let X; be the diffusion process driven by

dX: = p( X, t)dt 4+ o( Xy, t)dWy.

We shall suppress the dependence on x, t of 1 and o for notational simplicity.
Theorem

Let u = u(z, t) be the solution to the terminal value problem



Then u has the representation
u(z,t) = B [R(X1)],

where E; ;. [-] denotes the conditional expectation E[-| X; = z].

Proof

Applying Ito's formula to u(X¢, t) yields

since u satisfies the PDE
o?
ur + ?um + pug = 0.

Thus taking conditional expectation E; ; [-] on both sides and taking into account the terminal condition u(z, T') = h(z)
we end up with

u(z, t) = Bz [R(X7)].

The Feynman-Kac formula

Let u = u(z, t) be the solution to the terminal value problem

Then u has the representation
"V(x,,s)d
u(z,t) = Eiy [e‘ft (Xs:9) Sh(XT)] ,

where E; ;. [-] denotes the conditional expectation E[-|X; = x]. This is the celebrated Feynman-Kac formula.

Proof of Feynman-Kac formula

' V(Xs 78)

Applying Ito's formula to u(X;, t)e” Jo s yields

since u satisfies the PDE

0.2

In integral form

V(X,,s)ds

therefore, by dividing on both sides the term e~ I we have

Richard Phillips Feynman



Courtesy: Photo from Wikipedia

Marek Kac

Courtesy: Photo from Wikipedia
Quoted from Wikipedia:

e His question, "Can one hear the shape of a drum?" set off research into spectral theory, with the idea of
understanding the extent to which the spectrum allows one to read back the geometry.

¢ When Kac and Richard Feynman were both on the Cornell faculty he went to a lecture of Feynman's and saw
that the two of them were working on the same thing from different directions. The Feynman-Kac formula
resulted, which proves rigorously the real case of Feynman's path integrals. The complex case, which occurs

when a particle's spin is included, is still unproven.

Adding nonhomogeneous term

Let u = u(z, t) be the solution to the terminal value problem

Then u has the representation



u(z,t) = Ey lh(XT) - /tT f(XT,T)dT] ,

where E; ;. [-] denotes the conditional expectation E[-| X; = x].

Backward second order parabolic PDEs

Finally, we have the stochastic representation for any backward second order parabolic linear PDE with terminal condition
as follows.

Theorem
Let u = u(z, t) be the solution to the terminal value problem

Then u has the representation

T
u(z,t) =Bz |e” LTV(XS’s)dSh(XT)_/ e I VXeR)ds (X, 7)dr |,
t

where E; . [-] = E[-| X+ = ] is the conditional expectation.

Optimal control theory

Quotes from Wikipedia:

"Optimal control theory, an extension of the calculus of variations, is a mathematical optimization method for deriving
control policies. The method is largely due to the work of Lev Pontryagin and his collaborators in the Soviet Union and
Richard Bellman in the United States."

"Optimal control deals with the problem of finding a control law for a given system such that a certain optimality criterion
is achieved. A control problem includes a cost functional that is a function of state and control variables. An optimal
control is a set of differential equations describing the paths of the control variables that minimize the cost functional. The
optimal control can be derived using Pontryagin's maximum principle (a necessary condition also known as Pontryagin's
minimum principle or simply Pontryagin's Principle), or by solving the Hamilton—-Jacobi—Bellman equation (a sufficient
condition).”

Richard Ernest Bellman
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Stochastic control problem

A stochastic control problem is a control problem which aims to minimize certain expected costs among all admissible
controls.
Specifically, consider

T
min E |g(X —|—/ h(s, X'V, vy)ds
nin B [o0e)+ [ s, X1, 00

where

» g is referred to as the terminal cost and h is the running cost



« the state variable X" is driven by the controlled SDE

dXt(v) = [,l,(t, Xt(v), Ut)dt + O'(t, Xt(v), ’Ut)th.
« G0, T is the collection of admissible controls in the time interval [0, T']

Bellman’s principle of optimality

“An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decision.”

(See Bellman, 1957, Chap. 111.3.)

Value function
» For a given admissible control v € Q[t, T], define the expected objective functional J®) as

T
JO(t,z) = E [g(X‘T”) + [ b X8 s Xi = x] .
t

« The value function J(¢, z) for a stochastic control problem is defined as
J(t,z) = min JO (¢, z).
(t,2) = min J®(t,2)
« The value function J at (¢, z) is the optimal value of the control problem conditioned on the process starting at
(t, ) and applying the optimal control thereafter.

Bellman's principle again

The Bellman's principle can be rephrased in terms of value function as follow. Forany 0 < e < T —t,

t+e
J(t,z)= min E / h(s, X, vg)ds + J(t + e, X))
vEG[t,t+e] t

a

The Hamilton-Jacobi-Bellman (HJB) equation

The value function J satisfies the terminal value problem

O J (t, x) + mgi[n]{E(U)J(t, z)+h(t,z,v)} =0, fort <T
veGt

with terminal condition



Note

* The HJB equation is bascially an infinitesimal version of the Bellman's principle.
e The optimal policy (control) is given implicitly in terms of the value function J.



