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tive of stabilizing and destabilizing mechanisms. While price adjustment
can be regarded as a stabilizing mechanism, are there mechanisms that
destabilize an economy? We find that as early as 1939, Harrod dis-
cussed a destabilizing mechanism– a firm’s adjustment of its investment–
illustrated by the knife-edge problem. We construct a macro-dynamic
model with investment and price as the core macroeconomic variables.
Our analysis shows that the interaction between the stabilizing mech-
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1 The Introduction

In economics, there are basically two approaches to studying business cycles (or
economic fluctuations). One approach is to regard business cycles as caused by
exogenous shocks. In this view, the observed recurrent and irregular fluctuations
are generated by repeated stochastic impulses to the economy. Historically,
this approach can be traced back to Frisch (1933) and Slutsky (1937). Recent
business cycle theories, such as real business cycles (RBC) and New Keynesian
Dynamic Stochastic General Equilibrium (NK-DSGE), are often based on this
approach.1

The other approach is to regard business cycles as systematic, deterministic,
and self-generating recurrent cycles inherent to the underlying economy. The
endogenous approach to business cycles is often found in the literature related
to traditional Keynesian economics, nonlinear dynamics and disequilibrium eco-
nomics.2 The endogenous approach has not been well developed. Usually, the
behavioral equations in the related models are not derived from optimization;
the sources of economic fluctuation, although endogenous, are often unclear.
In this paper, we argue that whether business cycles are exogenous or en-

dogenous depends on whether destabilizing mechanisms exist in the economy.
Economists consider that the economy can be stabilized by price adjustment.
While a price adjustment can be regarded as a stabilizing mechanism, there may
be other mechanisms that can destabilize the economy. An important example,
as illustrated in this paper, is the investment adjustment underlying Harrod’s
instability (or knife-edge) puzzle (Harrod, 1939).
Given the existence of a destabilizing mechanism, an economic fluctuation

can be regarded as the interaction between these two mechanisms. If the sta-
bilizing mechanism exerts a stronger force, the economy is inherently stable,
and thus the driving force of economic fluctuation can only be exogenous. Con-
versely, if the destabilizing mechanism exerts a stronger force, the economy is
inherently unstable, and the government will need to introduce a stabilization
policy as an additional stabilizer.3

The paper is organized as follows. We first provide a brief introduction to
the destabilizing mechanism in a simple Harrodian economy, and then show
how economists, starting with Solow (1956), disregard this mechanism. Section
3 presents a simple statistical test to prove the existence of the destabilizing
mechanism. In Section 4, we prove the existence of optimum capacity utiliza-

1The representative RBC literature includes Kydland and Prescott (1982), Long and
Plosser (1983) and King et al. (1988a, 1988b), Christiano and Eichenbaum (1992), King
and Rebelo (1999), among others. For a review of the RBC literature, see Rebelo (2005) and
Gong and Semmler (2006). For the various NK-DSGE models, see Rotemberg and Wood-
ford (1997), Gali (1999), Gertler et al. (1999), Woodford and Walsh (2005), Walsh (2003),
Christiano et al. (2005), Smets and Wouters (2007) and Altig, et al. (2011), among others.

2The literature in this area includes, for example, Goodwin (1951), Benhabib and
Nishimura (1979), Day (1982), Grandmont (1985), Flaschel et al. (2001, 2002), Gong and
Lin (2008), among others.

3 It should be noted that the stabilizing and destabilizing mechanisms do not exclude ex-
ogenous shocks as a possible source of economic fluctuation. However, exogenous shocks are
no longer important under this approach.
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tion, which is a key concept for investment adjustment. Section 5 presents our
model, which includes both stabilizing and destabilizing mechanisms. Section
6 provides a stability analysis to the model without a government stabilization
policy. Section 7 analyzes the model with government policy as an additional
stabilizer. Finally, Section 8 provides the conclusion. The proof of the proposi-
tions is provided in the appendix.

2 What is a Destabilizing Mechanism and How
is it Disregarded in Economics?

2.1 Harrod’s Instability Puzzle

Ever since Harrod (1939) first introduce the concept, economists have engaged
in an ongoing debate over destabilizing mechanisms. To a great extent, Har-
rod’s instability puzzles motivated the research into dynamic economics, which
includes not only business cycles, but also growth. The following equations can
be considered as the structural form of the Harrodian economy:4

Yt = Ct + It, (1)

Ct = (1− s)Yt, (2)

Kt = (1− d)Kt−1 + It, (3)

Y pt = BKt−1, (4)

Ut =
Yt
Y pt
, (5)

It
Kt−1

=

{
−ξ0 + ξUt−1, if Ut−1 > ξ0/ξ

0, otherwise
ξ0, ξ > 0 (6)

In the above, Yt is the output (or the aggregate demand); Ct is the consumption;
It is the investment; Kt is the capital stock; Y

p
t is the potential output (or

capacity); Ut is the capacity utilization; and s ∈ (0, 1), B > 0, and d ∈ (0, 1) are
the saving ratio, the capital coeffi cient, and the depreciation rate, respectively.
The meanings of equations (1) - (6) are all straightforward. Equation (1)

is the national income identity; equation (2) explains the determination of con-
sumption; equation (3) describes the accumulation of capital stock; equations
(4) and (5) are the definitions of potential output and capacity utilization;5 and
finally, equation (6) is the behavior function of investment.
The key equation that makes the system unstable is equation (6), the in-

vestment adjustment. The economic reasoning for this investment behavior is

4For references, see Sen (1970) and Gong (2001), among others.
5Note that by this definition, the capital stock in period t − 1 is measured at the end of

period t−1 (or at the beginning of period t) so that it provides the capacity for the production
in period t. Of course one can also define Y pt = BKt. This will not change the basic property
of the model, but will increase the nonlinearity.
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clear: investment creates capacity. If the demand for firm’s output increases
so that its existing capacity is insuffi cient, the firm will invest in creating more
capacity. In this paper, we construct a dynamic optimization model that allows
us to derive the investment function as in (6).
Note that equations (1) and (2) imply that

Yt =
1

s
It (7)

This reflects the method of determining output via a multiplier, as in traditional
Keynesian economics, such as the IS-LM model. Thus, investment creates not
only the capacity in the product market via (3) and (4), but also the demand
via the multiplier 1

s in equation (7).
The market status is reflected in the comparison of Yt and Y

p
t or in capac-

ity utilization Ut. Assuming that the economy is in the range of (ξ0/ξ,+∞),
equations (4), (5) and (7) allow us to obtain

Ut =
It

sBKt−1

Substituting the investment function (6) into the above, we obtain

Ut = − ξ0
sB

+
ξ

sB
Ut−1 (8)

Denote Ū as the steady state of Ut. We find from the above that

Ū =
ξ0

ξ − sB

For Ū to be positive and thus economically meaningful, we require that ξ >
sB. However, this indicates that ξ

sB > 1. Therefore, the dynamic system as
expressed in (8) is unstable. Figure 1 shows the trajectory of Ut.
Harrod called this instability the knife-edge problem. Intuitively, the prob-

lem can be expressed as follows. Suppose there is a certain degree of overheating
in the economy. In this case, the investment will increase to meet the increased
demand (or insuffi ciency in capacity). However, investment increases not only
the capacity, but also the aggregate demand. As ξ

sB > 1, for the economy as
a whole, the increased demand will be larger than the increased capacity. This
will overheat the economy further and thus impel the firm to invest more. Con-
versely, if there is excess capacity, the firm will reduce its investment, but this
reduction will also reduce the aggregate demand and thus the excess capacity
will be enlarged.

2.2 Switching to Growth: Treatment by Solow (1956)

Harrod (1939) titled his seminal paper as "An Essay in Dynamic Theory." In
modern economics, dynamics may refer either to the growth or to the business
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Figure 1: The Trajectory of Ut: i(Ut−1) = − ξ0
sB + ξ

sBUt−1

cycle. This seems to suggest that Harrod may not have confined his economic
dynamics to the issue of growth; in fact, it was Solow (1956) who later restricted
Harrod’s dynamic problem to the growth field. Through this restriction, Solow
resolved Harrod’s puzzles within the neoclassical framework that ignores the
demand side of an economy:

A remarkable characteristic of the Harrod-Domar model is that
it consistently studies long-run problems with the usual short-run
tools. One usually thinks of the long run as the domain of neoclas-
sical analysis, the land of the margin. Instead, Harrod and Domar
talk of the long run in terms of a multiplier, an accelerator, "the"
capital coeffi cient (Solow, 1956, pp.66)

Solow’s neoclassical economy is very simple. Under the assumption of mar-
ket clearing, the economy is composed of the first three equations (1) - (3) of
Harrod’s system plus the following production function:

Yt = K1−α
t (AtLt)

α (9)

For Solow, this is an important improvement over Harrod’s production technol-
ogy because it allows the substitution between labor and capital. 6 Yet, by this

6 In a communciation with one of the authors, Solow said that he did not believe that the
knife-edge problem exists because the empirical economy does not behave like a knife-edge.
Therefore, in his paper he does not try to deal with the knife-edge problem, but with Harrod’s
(1939) second problem, that is, the unbalanced growth between labor and the product market.
This unbalanced growth problem is associated with the difference between the natural rate
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transformation, the output is no longer determined by the demand via a multi-
plier as in (7), but by the supply via the production function (9). Although the
system still permits equation (7) due to the inclusion of (1) and (2), the eco-
nomic meaning of (7) is completely different. In a Harrodian economy, equation
(7) explains the output determination in a demand-determined economy, which
is the key hypothesis of Keynes (1936). Solow (1956), however, explains the
method of investment determination. This indicates that the equation should
be re-written as It = sYt, while the output determination is given by (9).
We thus find that the investment behavior in Solow (1956) is simply a residue

of national income identity. Investment does not respond to the market status of
excess demand (or supply), as reflected by capacity utilization; it does not even
create demand a via multiplier. Therefore, Harrod’s destabilizing mechanism
no longer exists.

2.3 Destabilizing Mechanisms in Recent Macroeconomics

Macro-dynamic models have been developed extensively since Solow (1956).
New techniques such as dynamic optimization and log-linearization, among oth-
ers, have been introduced. Investment theory has been enriched and provided
with a micro-foundation, making investment no longer a simple residue.7 Some
Keynesian concepts, such as uncertainty, adjustment costs, and capital utiliza-
tion, are also introduced. In particular, the adjustment cost that occurs with
pricing generates the sticky pricing theory that is at the core of the NK-DSGE
model.8

While all of these are important, the investment determination in these
models still deviates from that of Harrod (1939). In most cases, it is the house-
hold rather than the firm that makes the investment decision. The household
is assumed to own the capital stock and therefore makes the investment deci-
sion jointly with the consumption decision to maximize its utility (rather than
profit). It is assumed that the firm rents the capital stock period by period. This
institutional arrangement is based on the assumption that the capital stock is
homogeneous. The RBC and most of the NK-DSGE models, such as Christiano
et al. (2005), all make this assumption.
The assumption of homogeneous capital is certainly unsatisfactory. Recently,

a few attempts have been made to introduce firm-specific capital, and thus it is
the firm rather than the household that decides on investment.9

Yet, in none of these treatments, does the investment respond to the market
demand relative to the capacity (or capacity utilization), as asserted by Harrod
(1939). For instance, although capital utilization (a similar concept to capacity

of growth in the labor market and the warrant rate of growth in the product market. To
resolve this problem, the Cobb-Dauglass production function must be introduced to allow the
substitution between labor and capital.

7See, for instance, Abel and Eberly (1994), among others.
8For the typical sticky pricing models, see, for instance, Rotemberg (1982), Calvo (1983),

Mankiw (1985), and Taylor (1999), among others.
9For research on firm-specific capital, we refer the readers to Woodford (2005), Sveen and

Weinke (2007), and Atig et al. (2011), among others.
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utilization in the Harrodian economy) has been introduced, so that (9) may
become Yt = (UtKt)

1−α(AtLt)
α, the capital utilization Ut is set by the firm (or

even by the household in a model with homogeneous capital). This indicates
that it is still the firm’s willingness to supply (reflected by the firm’s optimum
choice) that determines the output. This differs from the models of Harrod and
also the original model of Keynes (1936), in which the firm’s production out-
put is determined by the demand, which is exogenous to the firm and thus not
controllable (or set) by the firm. Given that the firm’s output is exogenous, the
firm’s capacity utilization Ut should also be exogenous and also not controllable
(or set) by the firm. The investment adjustment in response to capacity utiliza-
tion (which is exogenous to the firm) is the key hypothesis for the investment to
be a destabilizing mechanism, thus we find no destabilizing mechanism in the
models.10

Although most macroeconomic models do not involve the destabilizing mech-
anism, a few models do allow for Harrod’s investment adjustment and thus entail
a destabilizing mechanism. In these models, investment is often in response to
capacity utilization, which generates the instability, as in Harrod (1939). To
overcome the instability, stabilizing mechanisms such as pricing and govern-
ment stabilization policies are introduced. This type of model also has very rich
empirical results for both developed and developing economies.11 However, the
behavior functions in these models are not usually derived by optimization.
In this paper, we will discuss the business cycles in terms of this approach,

while providing the optimization for deriving the behavior functions underlining
the model. We find that this approach enriches our understanding of economic
fluctuation. It also allows us to identify the role of government stabilization
policies. First, we shall provide a simple test to empirically demonstrate the
existence of the destabilizing mechanism.

3 Empirical Existence of a Destabilizing Mech-
anism

One of the arguments that Solow makes for disregarding the knife-edge puzzle
is that the empirical economy does not behave like a knife edge.12 It is true
that empirically, economies do not usually appear to be divergent as in Figure 1.
Instead, they move cyclically around some steady state. The impulse-response
function also shows that if there is a deviation from the steady state, e.g. due
to a shock, an economy will move back to the steady state after some time.
This seems to suggest that the economy is inherently stable and the economic

10Later in this paper, we demonstrate that it is possible to establish a method for determing
output from demand (i.e., exogenous to the firm) in an optimization model, which can thus
be understood as bounded rationality.
11This type of models is applied to the U.S. economy in Flaschel et al. (2001), to the

German economy in Flaschel et al. (2002), and to a developing economy such as China in
Gong and Lin (2008) and Gong (2013).
12This is discussed in a letter written by Solow to one of the authors of this paper.
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fluctuations that we observe empirically can only be caused by exogenous shocks.
However, what we observe empirically is the regular enforcement of govern-

ment stabilization policies. An interesting question then is if without govern-
ment stabilization policies, an economy can still be stabilized? The answer to
that question allows us to see whether a destabilizing mechanism exists empiri-
cally. Next, we shall provide a simple statistical test to answer this question.
We use annual data from China because the stabilization policy introduced

in this paper is consistent with the current Chinese economy, and all of the pa-
rameters used in the simulation are estimated according to these annual data.13

We consider four economic variables, real GDP, real investment, CPI, and money
supply, denoted as Yt, It, Pt and Mt respectively. Note that the money supply
Mt reflects the monetary policy in the current Chinese economy.14 All variables
are detrended using an HP filter.
As a test, we first estimate a simple VAR model,
Ŷt
Ît
P̂t
M̂t

 =


b01
b02
b03
b04

+


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44




Ŷt−1
Ît−1
P̂t−1
M̂t−1

+


ε1,t
ε2,t
ε3,t
ε4,t

 (10)

where a variable X̂t is the detrended variable Xt, and εi,t, i = 1, 2, 3, 4, is an
i.i.d. innovation. The impulse response functions due to a shock in investment
(5% deviation from the steady state) are shown in Figure 2. As the figure shows,
all of the responses eventually return to the steady state. Therefore the economy
is assumed to be stable.

However, the stability may be due to the stabilization policyMt. To examine
whether the economy can remain stable without stabilization policy,Mt, we need
to set up M̂t and M̂t−1 in the model (10) to 0. Thus, the model is transformed
to  Yt

It
Pt

 =

 b̂01
b̂02
b̂03

+

 b̂11 b̂12 b̂13
b̂21 b̂22 b̂23
b̂31 b̂32 b̂33

 Yt−1
It−1
Pt−1

 (11)

where b̂ij is the estimated bij from the model (10). The impulse response to
the same investment shock, but now computed from (11), is shown in Figure 3.
As the figure shows, the responses do not return to the steady state and thus
the economy is no longer stable. This indicates that, at least in the Chinese
economy, there must be some destabilizing mechanism that exerts a greater
force than that exerted by pricing mechanism.

13Quarterly data from China were not available until recently.
14See the discussion in Gong and Lin (2008) and the discussion in Section 4 of this paper,

8



Figure 2: The Impulse Response Functionn with Monetary Policy: Response to
Investment Shock

Figure 3: Impulse Response Function without Monetary Policy: Response to
Investment Shock.
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4 The Existence of Optimum Capacity Utiliza-
tion

As shown in the Harrodian economy, capacity utilization is a key concept for
investment adjustment and thus for the existence of a destabilizing mechanism.
In this section, we first prove that under certain conditions, there exists a time-
invariant optimum level of capacity utilization. This is important because given
the optimum level of capacity utilization, investment can be understood as an
adjustment to that optimum.

4.1 Technology

We begin our discussion with the production technology used in this paper.
One criticism of the Harrodian economy concerns the production technology
adopted by Harrod (1939), which assumes no substitution between capital and
labor. We illustrate that even if we allow for the substitution between capital
and labor in the production function, Harrod’s instability theory still holds.
For a typical firm j ∈ [0, 1] in period t, the production technology (or the

input-output relation) is assumed to be in the form of the Cobb-Dauglass func-
tion, described as follows:

Yj,t = a (Aj,tLj,t)
α
K1−α
j,t−1 (12)

where, Yj,t is the output produced for j at t; Kj,t−1 is the capital stock specific
to j measured at the end of period t − 1, so it provides the production facility
in period t; Lj,t is the labor employed by j; Aj,t is a measure of labor effi ciency,
whose dynamics reflects technical progress; and a is a time-invariant parameter.
This production function is very common in the literature. Here, we use

Kj,t−1 rather than Kj,t to enter the production function, merely to emphasize
that the capital stock in period t is fixed. Given a fixed capital stock, the
capacity utilization, a key concept in Harrod (1939), can naturally be derived.

4.2 Capacity Utilization

The input-output relation expressed in (12) implies that

Aj,tLj,t =

(
Yj,t

aK1−α
j,t−1

)1/α

= Yj,t

(
Yj,t
Kj,t−1

) 1−α
α 1

a1/α

Define B
1−α
α ≡ a1/α. Thus, we find from the above that

Lj,t =
Yj,t
Aj,t

(
Yj,t

BKj,t−1

) 1−α
α

(13)
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Equation (13) can be understood as the demand function for labor, given the
firm’s production output Yj,t, the capital stock Kj,t−1 and the labor effi ciency
Aj,t.
As in Harrod (1939), we define the capacity utilization Uj,t as

Uj,t ≡
Yj,t

BKj,t−1
(14)

Further expressions might be needed here to capture the economic meaning
of capacity utilization Uj,t under the Cobb-Dauglass production function that
allows substitution between capital and labor. Suppose that in period t, the
production facility represented by Kj,t−1 is given. The production activity
can thus be understood as employing laborers to run the facility: the longer
the facility runs, the larger the output produced. Therefore, we can define
the capacity utilization Uj,t as in (14), which roughly reflects the proportion
of time that the facility runs in period t (which generates output Yj,t) over the
normal working time available in a period (which generates the potential output
BKj,t−1)15

Now, substituting (14) into (13), we obtain

Lj,t =
Yj,t
Aj,t

(Uj,t)
1−α
α (15)

Equation (15) simply states that the demand for labor Lj,t is used to run the
facility to produce the output Yj,t. Thus, Lj,t is positively determined by output
Yj,t, and negatively by labor effi ciency Aj,t, and is adjusted by capacity utiliza-
tion Uj,t. There is no doubt that the longer the facility runs in a given period
(or the higher the capacity utilization), the more labor is needed to produce
additional output.

4.3 Cost Function

Given the definition of capacity utilization Uj,t as expressed in (14), we find
that the production cost can also be understood as a function of Uj,t. Let Cj,t
denote the total cost in real terms for firm j at t, and let Wj,t denote the real
wage rate paid by the firm. Ignoring the other intermediate input (such as raw
materials, etc.), the total cost of the firm can be written as

Cj,t = Lj,tWj,t + vKj,t−1

where the labor cost Lj,tWj,t can be regarded as a variable cost (because, as
shown below, it will vary with the produced output Yj,t), and vKj,t−1 is a fixed
cost, which will not vary with output Yj,t but with the capital stock Kj,t−1.
Now, expressing Lj,t in terms of (15), we obtain

15For instance, we can assume that when the capacity utilization Uj,t is equal to 1, the
facility runs for 40 hours a week. Given this capacity utilization, and the capital stock Kj,t−1
and the output Yj,t produced in 40 hours, we can always find a value of B, the capital
coeffi cient, that makes Yj,t/(BKj,t−1) equal 1.
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Cj,t =
Wj,tYj,t
Aj,t

(Uj,t)
1−α
α + vKj,t−1 (16)

Suppose Wj,t

Aj,t
= ω, that is, the real wage Wj,t increases at the same rate as the

labor effi ciency Aj,t.16 Thus, given the total cost as in (16), the marginal cost
C
′

j,t ≡
∂Cj,t
∂Yj,t

and the average cost cj,t ≡ Cj,t
Yj,t

can be written as

C
′

j,t =
ω

α
(Uj,t)

1−α
α (17)

cj,t = ω (Uj,t)
1−α
α +

v

B
(Uj,t)

−1 (18)

Above, ω (Uj,t)
1−α
α can be regarded as the average variable cost (AVC) and

v
B (Uj,t)

−1 as the average fixed cost (AFC).

4.4 Optimum Capacity Utilization when Capital Stock is
not Adjustable

It is useful to derive the level of capacity utilization that minimizes the average
cost. From (18), the first-order condition for this minimization problem can be
written as

1− α
α

ω (Uj,t)
1−α
α −1 − v

B
(Uj,t)

−2
= 0

Solving the above equation for Uj,t, we obtain

U∗j,t =

[
αv

ω (1− α)B

]α
(19)

This can be regarded as the optimum capacity utilization when the capital stock
is given (or not adjustable). We find that it is indeed time-invariant.
Let C

′

j,t = cj,t. From (17) and (18), we find that

ω

α
(Uj,t)

1−α
α = ω (Uj,t)

1−α
α +

v

B
(Uj,t)

−1

Solving the above equation for Uj,t, we again obtain (19). Therefore, the level of
capacity utilization that minimizes the average cost, as expressed in (19), is also
the level at which the marginal cost cuts the average cost. Figure 4 provides
the different costs as a function of capacity utilization.
The above discussion seems to suggest that the standard firm theory in

microeconomics with regard to the cost function still holds in terms of capacity
utilization. In particular, given the capital stock Kj,t−1, the marginal cost
and the variety of average costs can all be expressed as a function of capacity
utilization Uj,t. In addition, if

Wj,t

Aj,t
= ω, the functions are also time-invariant.

This also indicates that the optimum level of capacity utilization that minimizes
the average cost can be a constant (see equation (19)).
16This assumption seems plausible in developed economies where surplus labor is not sig-

nificant. Meanwhile it will make our model much simple since we do not need to introduce
the labor market into our model.
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Figure 4: Marginal cost (MC), average cost (AV ), average variable cost (AV C)
and average fixed cost (AFC) as functions of capacity utilization Uj

4.5 Optimum Capacity Utilization when Capital Stock is
Adjustable

The capacity utilization expressed in (19) can be understood as the optimum
capacity utilization when capital stock is given (not adjustable). Suppose now
that the average cost is too high due to the high capacity utilization. In this
case, investment is needed to expand the capacity to reduce the average cost.
Investment is constructed for future capacity; therefore, we assume that the

firm has been given a sequence of expected demands E {Yj,t+k}∞k=0, a sequence
of technologies E {Aj,t+k}∞k=0, and a sequence of real wages E {Wj,t+k}∞k=0,
among others, when making an investment decision in period t. The investment
decision problem can thus be expressed as the choice of a sequence of investments
{Ij,t+k}∞j=0 such that

max
{Ij,t+k}∞k=0

E

∞∑
k=0

βk [Pj,t+kYj,t+k − Pt+kcj,t+kYj,t+k − (1 + r)Pt+kIj,t+k] (20)

subject to
Kj,t+k = (1− dj)Kj,t+k−1 + Ij,t+k (21)

where E is the expectation operator; β is the discount factor; r can be regarded
as the interest rate that reflects the firm’s opportunity cost of investment; Pj,t+k
is the price of the product produced by firm j; Pt+k is the aggregate price level;
cj,t+k is the average cost, expressed by (18); and dj is the depreciation rate.
Equation (21) can be regarded as the process of capital accumulation.
Proposition 1 provides the solution to this optimization problem.
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Proposition 1 Suppose E
[
Wj,t+k

Aj,t+k

]
= ω and E

[
Pt+k
Pt+k−1

]
= π. Then, the prob-

lem in (20) - (21) with cj,t+k, given by (18), allows us to obtain

U∗j,t+k = U∗j =

(
α [(1 + r)/(βπ)− (1 + r)(1− dj) + vj ]

(1− α)Bω

)α
(22)

where k = 1, 2, 3, ....

The proof of this proposition is given in the appendix.
Equation (22) is quite similar to equation (19) when the capital stock is

given (or not adjustable). Consider β = 1, r = 0, π = 1, and dj = 0, so that we
return to a one-period decision. In this case, the two equations (22) and (19)
coincide. This comparison allows us to obtain the following interpretation of
the investment decision

Suppose the investment is divisible. Whatever the level of ex-
pected demand, E[Yj,t+1], the purpose of investment Ij,t is simply to
adjust the capital stock Kj,t to the level at which E[Yj,t+1]/(BKj,t)
is equal to U∗j , as in (22), which minimizes the average cost of pro-
duction.

5 The Model

Given the technology, the variety of cost functions, and the existence of op-
timum capacity utilization as described above, we now discuss the decisions
made by firm j. There are three types of decisions to be made: production,
pricing and investment. One of the important assumptions that differentiates
the model from most other models is that the firm make its decisions separately
and sequentially. The sequence of decision events pertaining to j is as follows.

At the very beginning of period t, the firm makes its investment plan I∗j,t.
This is essential because there is a time interval in which the firm must build
Kj,t via investment to serve the capacity for period t+1. At the same time, the
monetary policy for period t is also announced and executed, which may con-
strain the firm’s optimum plan I∗j,t. This results in the firm’s actual investment
Ij,t in the period. Next, the firm sets its price Pj,t, and announces it to the
public. Given the announced price Pj,t, the demand for the firm’s product Yj,t
is realized. The firm then purchases labor to satisfy the demand for its output
Yj,t. This can be regarded as the firm’s production decision.
Next, we follow this event sequence to construct our model.

5.1 Investment without Financial Constraint

Given an optimum level of capacity utilization U∗j , as expressed in (22), we
shall now consider how the investment should be made. Because the investment
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carried in period t creates the capital stock Kj,t that serves the capacity for
period t+ 1, the optimum investment, denoted as I∗j,t, should satisfy

E [Yj,t+1]

B
[
(1− dj)Kj,t−1 + I∗j,t

] = U∗j

where the left side of the equation can be understood as the expected capacity
utilization for period t+ 1. Resolving this equation for I∗j,t, we obtain

I∗j,t =
E [Yj,t+1]

BU∗j
− (1− dj)Kj,t−1 (23)

Dividing both sides by Kj,t−1, we obtain

I∗j,t
Kj,t−1

=
E [Yj,t+1]

BU∗jKj,t−1
− (1− dj)

= −(1− dj) +

(
E[yj,t+1]

U∗j

)
Uj,t (24)

where E[yj,t+1] is the expected gross growth rate of product j.
Note that in the discussion with regard to the event sequence, we assume

that the investment decision is made at the very beginning of period t. This
indicates that the firm may not observe its market demand in t and thus the
capacity utilization Uj,t. In this case, Uj,t in (24) can simply be regarded as the
expected capacity utilization of Uj,t given the information in Uj,t−1. Suppose
that E [Uj,t] = Uj,t−1 and E[yj,t+1] = yj .17 We find that (24) can be re-written
as

I∗j,t
Kj,t−1

= −(1− dj) +
yj
U∗j

Uj,t−1 (25)

This equation indicates that the investment rate
I∗j,t

Kj,t−1
depends on the ob-

served capacity utilization: the higher the capacity utilization, the higher the
investment rate.

5.2 Monetary Policy

Usually, a monetary authority has two approaches available to manage demand
(or stabilization). The first is to target, or exogenize, the money supply. In
this case, the interest rate could be endogenized. This method of demand man-
agement is introduced in the traditional IS-LM model, and was practiced by
most developed countries before 1990s. It was also introduced by the current
monetary authority in China.18 The second approach is to target interest rates.

17This assumption will make our investment behavior the same as in the Harrodian economy
(see equation 6),
18See Gong (2012)
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In this case, the money supply is endogenized while the interest rate is exoge-
nous. This occurred recently in the U.S. and other developed countries. The
major reason for this transition, i.e., from targeting money supplies to targeting
interest rates, is the institutional change in financial markets.19

Following Gong and Lin (2008) and Gong (2013), in this paper we use the
money supply as the major target for the monetary authority to conduct its
demand management. Let p∗ denote the gross inflation rate that the monetary
authority wants to target. Thus, the monetary policy rule can be formulated as

mt −mt−1 = κp(p
∗ − pt−1) + κm(m∗ −mt−1), κm, κp > 0 (26)

where mt and m∗ represent the actual and targeted gross growth rate of the
money supply. This formulation indicates that the money supply will change
in response to whether inflation and the money supply in the last period were
below or above their targets.

5.3 Investment with Financial Constraint

Next, we consider the effects of monetary policy on the economy. It is apparent
that it should affect investments. The investment that we consider is the opti-
mum investment desired by firm j if there is no financial restriction. A financial
restriction may affect this investment through two channels: the interest rate
and the credit supply. Consistent with the money supply rule adopted in (26),
we consider the credit supply.
Suppose that our representative firm j is able to acquire a loan from a

commercial bank (in real terms) up to ∆Mj,t−1 for its investment.20 This
indicates that the firm’s investment under credit constraint can be written as

Ij,t =

{
I∗j,t I∗j,t < ∆Mj,t−1
∆Mj,t−1 otherwise

(27)

Let ∆Mt−1 denote the total additional money (or credit) from the commercial
bank system in period t − 1. This money supply is targeted by the monetary
authority, and it is the amount of money that a commercial bank can lend to
finance the investment. Given ∆Mt−1, we write ∆Mj,t−1 as

∆Mj,t−1 = lj∆Mt−1 (28)

where lj ∈ [0, 1) is the proportion of total credit allocated to j.
Under this credit plan, the firm makes its investment decisions according to

(27). Summing all Ij,t’s, we get the aggregate investment It:

It =

∫ 1

0

Ij,tdj (29)

19For a discussion of this transition, see Taylor (1993).
20Here, we assume that it is the money supply (or credit) in period t − 1 that is used for

financing the investment in period t.
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Depending on the credit ratio lj assigned to the firm, we find that for some
j’s, investments are bounded, that is, Ij,t = ∆Mj,t−1; whereas for others, in-
vestments are at the optimum, that is, Ij,t = I∗j,t, where I

∗
j,t is given by (25).

Re-arranging the index of the firms such that the first n1 proportion of the firms
are bounded, we can write (29) as

It = φ∆Mt−1 +

∫ 1

n1

[
−(1− dj)Kj,t−1 +

(
1 + yj
U∗j

)
Uj,t−1Kj,t−1

]
dj (30)

where φ =
∫ n1
0
ljdj. Under the identical assumption of a representative agent,

the above equation can be re-written as

It = φ∆Mt−1 − (1− d)

∫ 1

n1

Kt−1dj +
1 + y

U∗
Ut−1

∫ 1

n1

Kt−1dj

Dividing both sides of the above equation by Kt−1, the aggregate capital stock,
we obtain from the above

It
Kt−1

= φ
∆Mt−1
Kt−1

− (1− d)nk +
(1 + y)nk

U∗
Ut−1 (31)

where nk can be regarded as the proportions of capital stock from those unre-
stricted firms:

nk ≡
∫ 1
n1
Kj,t−1dj

Kt−1

Here, we assume this proportion to be time-invariant.
To ensure our analysis is tractable, we assume a linear relationship between

the aggregate money supply and the aggregate capital stock Kt−1 = ηMt−2. As
we are working with aggregate variables, the rationality of this linear relation-
ship is considered more from a statistical view point.21

Given this linear proposition, we can now re-write our aggregate investment
function (31) as

It
Kt−1

= −ξi + ξuUt−1 + ξm (mt−1 − pt−1) (32)

where mt−1 − pt−1 ≈ Mt−1/Mt−2 is the approximate gross growth rate of the
credit supply in real terms. Note that here, mt is the nominal growth rate of
the credit supply, which is targeted by the monetary authority. The parameters
ξi, ξu and ξm are given by

ξi = (1− d)nk, ξu =
(1 + y)nk

U∗
, ξm = φ/η.

21Gong and Lin (2008) and Gong (2013) estimate the investment function using data from
China and show that the estimation is statistically significant.
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5.4 Pricing

As noted above, the price adjustment is a stabilization mechanism. Yet, if we
follow New Keynesian economics as in this paper, the price adjustment is also
sticky. This indicates that the force exerted by the price mechanism may not be
large enough to overcome the force exerted by the destabilization mechanism in
the economy.
Following the sticky price theory of New Keynesian economics, the proba-

bility of firm j re-optimizing its price in period t is 1 − θ. Otherwise (with a
probability of θ), it simply indexes the price as P̃j,t according to the rule:

P̃j,t = pt−1Pj,t−1 (33)

where pt−1 ≡ Pt−1
Pt−2

is the gross inflation rate observed in period t− 1.
If firm j has a chance to re-optimize its price, the following optimization

problem is constructed to derive the optimal price P ∗j,t:

max
P∗j,t

E

∞∑
k=0

βkθk
(
πkP ∗j,tYj,t+k − Pt+kcj,t+kYj,t+k

)
(34)

subject to

Yj,t+k =

(
Pt+k
πkP ∗j,t

)ε
Yt+k (35)

Equation (34) indicates that the firm expects that in the future, at t + k, the
price will be indexed to πkP ∗j,t if it has no opportunity to re-optimize its price
after setting P ∗j,t. The probability of this condition occurring is equal to θ

k.
Equation (35) can be regarded as the demand function under this condition, for
product j at the future time t+ k; and cj,t+k is the average cost (as expressed
in (18).
To derive the optimum solution to P ∗j,t from (34) and (35), we make the

following assumptions:

Assumption: For k = 1, 2, 3, ...,

E [Uj,t+k] = U∗j , (36)

E [Yj,t+k] = ykYj,t, (37)

E [Pt+k] = πkPt, (38)

For k = 0,

E [Pt] = Pt−1, (39)

E [Uj,t] = Uj,t−1 (40)
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These assumptions are all necessary for the problem in (34) - (35) to be
tractable while not losing too much rationality. Assumption (36) indicates that
the firm expects to invest in the future to adjust the capacity utilization to its
optimum. Assumptions (37) and (38) indicate that the expected inflation rate
and growth rate of demand are constant over the future. Assumptions (39)
and (40) indicate that the firm regards events in the near future as a simple
projection from the current observed data.

Proposition 2 Suppose that assumptions (36) - (40) are satisfied, while βθyπ <
1. Then, the problem in (34) and (35) allows us to obtain

P ∗j,t = α0Pt−1 + α1Pt−1c (Uj,t−1) (41)

where

α0 =
εc∗j

(
β̃ − 1

)
(ε− 1)β̃

, α1 =
ε

(ε− 1)β̃
, β̃ =

1

1− βθyπ (42)

and the function c(·) is the average cost as expressed in (18) with Uj,t−1 given
by (14), and c∗j is the average cost when capacity utilization is at its optimum,
as expressed by (22).

The proof of this proposition is given in the appendix.
Given the individual price as expressed in (33) and (41), we now derive

the aggregate price Pt. According to Calvo’s rule (Calvo, 1983), in period t,
the probability that firm j will choose P̃j,t is θ while the probability that it will
choose P ∗j,t is 1−θ. This probability is independent across firms and time. Thus,
under the assumption of a representative agent, the dynamics of the aggregate
price Pt can be written as

Pt = θP̃j,t + (1− θ)P ∗j,t (43)

Substituting (33) and (41) into the above while dividing both sides by Pt−1, we
obtain

pt = (1− θ)α0 + θpt−1 + (1− θ)α1c(Ut−1)

Using (42) to express α0 and α1, the above equation can further be written as

pt = αp + θpt−1 + αuc(Ut−1) (44)

where

αp = (1− θ)εc∗δθ, αu = (1− θ)ε(1− δθ), ε =
ε

ε− 1
, δ = βπy

5.5 Bounded Rationality: Decision on Production

Once the firm has set the price Pj,t, it will announce it to the public, and
thus the market will generate demand for the firm’s output Y dj,t. This market
demand Y dj,t is delivered to the firm in terms of orders, contracts, etc. As
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mentioned, the firm’s production can simply be expressed as follows: employ
labor Lj,t according to (13) or (15) to produce Y dj,t so that Yj,t = Y dj,t. The
produced output Yj,t generates Uj,t, which serves as new information for the
firm’s decision making in the next period t+ 1.
However, is this way of making decision about production is rational, or can

it be derived from an optimization process? We discuss this next.
The firm’s production decision problem in period t can be expressed as

max
Yj,t

Pj,tYj,t − Ptc (Uj,t)Yj,t (45)

subject to
Yj,t ≤ Y dj,t (46)

Again, the function c(·) is the average cost as expressed in (18). Let us first
consider the solution without the restriction (46). Define this solution as the
optimum solution Y ∗j,t as in standard microeconomics. It is not diffi cult to find
that the first-order condition in this case can be written as

Pj,t = Pt
ω

α

(
Y ∗j,t

BKj,t−1

) 1−α
α

Solving the above equation for Y ∗j,t, we obtain

Y ∗j,t = BKj,t−1

(
αPj,t
ωPt

) α
1−α

Therefore, the solution to the problem (45) - (46) can be written as

Yj,t =

{
Y dj,t, if Y dj,t ≤ Y ∗j,t
Y ∗j,t, otherwise

Figure 5 provides a graphic representation of the determination of Yj,t. As the
figure shows, if the announced price is given by Pj,t, the firm’s optimum output
Y ∗j,t is larger than the market demand Y

d
j,t. In this case, the firm’s produced

output Yj,t is equal to Y dj,t. If the announced price is equal to P̄j,t, the firm’s
optimum output Ȳ ∗j,t is less than the corresponding market demand Ȳ

d
j,t. In this

case, the firm’s produced output Yj,t should be equal to Ȳ ∗j,t.
We have shown that there is a possibility that the firm’s production may not

satisfy the market demand, but it appears to be at its optimum (or the firm’s
willingness) when the announced price is equal to Pj,t. If this occurs often, the
economy cannot be regarded as a demand-determined economy and thus the
output determination used in this paper does not apply. Is this often the case?
In Figure 6, we find that the marginal revenue curve is always below the

demand curve. This makes the price set by the firm Pj,t generally higher than
the equilibrium price at which the demand curve cuts the marginal cost curve
(see point E in the figure). As the marginal cost curve reflects the firm’s will-
ingness to supply, we find that it is the monopolistic competition that makes
the firm set the price higher than the equilibrium price. This also indicates that
generally, the market has an excess supply and therefore the firm’s production
is often bounded by the market demand.

20



Figure 5: The determination of output, given demand and price

Figure 6: Bounded Rationality under Monopolistic Competition
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5.6 The Model as a Standard Dynamic System

The model is now complete; it comprises three behavior equations, the money
supply (26), the investment (32), and the pricing (44), with Ut given by (5) and
Yt by (7). From (5) and (7), we obtain

It
Kt−1

= sBUt

Substituting this into (32), we obtain

Ut = − ξi
sB

+
ξu
sB

Ut−1 +
ξm
sB

(mt−1 − pt−1) (47)

Equations (26), (44), and (47) thus form a standard dynamic system in three
dimensions (mt, pt, Ut).

6 The Model without Monetary Policy

Suppose κp = 0 and κm = 0. In this case, the system can be transformed into

Ut = − ξi
sB

+
ξu
sB

Ut−1 +
ξm
sB

(m∗ − pt−1) (48)

pt = (1− θ)εc∗δθ + θpt−1 + (1− θ) (1− δθ) εc (Ut−1) (49)

This model can be regarded as an economy without a government stabilization
policy. We are interested in whether (or under what conditions) the economy
can be stabilized.

6.1 The Steady State

The following is the proposition with regard to the steady state of the system
(Ut, pt) composed of (48) and (49).

Proposition 3 Suppose the cost function c(U) can be linearized as c′U around
the steady state. Then, there is a unique steady state (Ū , p̄) for the system
(Ut, pt) composed of (48) and (49), which can be expressed as

Ū =
−ξi + ξmm

∗ − ξmεc∗δθ
sB − ξu + ξm (1− δθ) εc′ (50)

p̄ = εc∗δθ + (1− δθ) εc′Ū (51)

The proof of this proposition is given in the appendix. The assumption of a
linearized cost function around the steady state greatly simplifies our analysis.
Without losing generality, it allows us to avoid the irreversible problem when
using the cost function (18) to derive the steady state.
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6.2 The Stability

Next, we analyze the stability pertaining to the system (Ut, pt). The Jacobian
matrix of the system (Ut, pt) can be written as

J =

[
ξu
sB − ξmsA

(1− θ) (1− δθ) εc′ θ

]
where c′ is the derivative of c(U) evaluated at the steady state Ū . Thus, the
characteristic equation takes the form of

λ2 −
(
ξu
sB

+ θ

)
λ+

ξu
sB

θ +
ξm
sB

(1− θ) (1− δθ) εc′ = 0

Solving the above equation for λ’s, we obtain two eigenvalues, which can be
expressed as

λ1,2 =
1

2

 ξu
sB

+ θ ±

√(
ξu
sB

+ θ

)2
− 4

[
ξu
sB

θ +
ξm
sB

(1− θ) (1− δθ) εc′
]

The following is the proposition regarding the properties of our two eigenvalues
λ1,2.

Proposition 4 Assume λ1 ≥ λ2.
1. Suppose that the condition(

ξu
sB
− θ
)2
≥ 4

ξm
sB

(1− θ) (1− δθ) εc′ (52)

holds. In this case, the two eigenvalues λ1 and λ2 are both real. Further-
more, if

1− ξu
sB

+
ξm
sB

εc′ (1− δθ) > 0 (53)

is satisfied, then
1 > λ1 ≥ λ2 > −1

2. Suppose that the condition (52) cannot hold so that the two eigenvalues λ1
and λ2 are complex conjugate. The modulus of the two eigenvalues denoted
as |λ1,2| can be either below or above 1 depending on the castellation of
the structure parameters. In particular, if (2− θ) sB − ξu > 0, then there
exists a critical value of ξm denoted as ξ∗m with

ξ∗m =
sB − ξuθ

εc′(1− θ) (1− δθ) (54)

such that in the neighborhood of ξ∗m:

(a) |λ1,2| < 1 when ξm < ξ∗m;
(b) |λ1,2| = 1 when ξm = ξ∗m;
(c) |λ1,2| > 1 when ξm > ξ∗m.

The proof of this proposition is given in the appendix.

23



6.3 The Strength of the Stabilization Mechanism

Before providing the stability analysis with the proposition, we shall first ob-
serve the stabilizing and destabilizing mechanisms entailed in the model. The
stabilizing mechanism is the price adjustment. According to equation (49),
greater utilization of capacity Ut−1 leads to a higher inflation rate pt. Given a
stable money supply m∗, the financial resources for investment (in real terms)
are reduced, which leads to a decrease in both the investment rate (see equation
(32)) and capacity utilization (see equation (48)). The destabilization mecha-
nism still arises from the investment adjustment and is reflected as ξu

sB > 1 (see
equation (48)).
Given the other structural parameters, such as ξu, s, and B among others,

we find that whether the stabilization mechanism is strong enough to overcome
the destabilization mechanism depends on

• θ, which reflects the stickiness of price adjustment: the larger the value of
θ, the more sticky the price adjustment; and

• ξm, which reflects the effect that price adjustment has on investment: the
larger the value of ξm, the greater the effect of the price adjustment on
investment.

6.4 Stability when ξm is not Large

We now discuss the stability of our model (Ut, pt) by relying on Proposition 4.
Note that condition (52) can also be written as

ξm ≤

(
ξu
sB − θ

)2
sB

4(1− θ) (1− δθ) εc′

Thus, we can regard (52) as the condition in which ξm is not large enough.
According to Proposition 4, the two eigenvalues λ1 and λ2 are both real in this
case, so there is no cyclical behavior in the economy. The trajectories of Ut and
pt can either be monotonically divergent or monotonically convergent. Whether
convergent or divergent depends on whether (53) is satisfied. Without diffi culty,
one may find that condition (53) can also be written as

θ <
sB − ξu + ξmεc

′

ξmεc
′δ

Setting

θ∗ ≡ sB − ξu + ξmεc
′

ξmεc
′δ

(55)

provided that θ∗ ∈ (0, 1), we find that a small perpetuation from θ∗ will change
the stability of (Ut, pt). Specifically, if θ < θ∗, or the price is not too sticky, the
economy can monotonically (rather than cyclically) converge to the steady state
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(Ū , p̄); however, if θ > θ∗, or the price is too sticky, the system is monotonically
divergent, as in the Harrodian economy. Therefore, a pitchfork bifurcation exists
around θ∗.
Figure 7 and 8 provide the numerical simulations of these two situations.

6.5 Numerical Simulation

The parameters used for our simulations are given in Table 1.

Table 1 benchmark Parameters
ξu ξm B m∗ s δ ε c′ c∗ ξi θ
0.220 0.040 0.655 1.130 0.300 1.000 1.200 0.962 0.962 0.022 0.55

The parameters ξu, ξm, θ, and B are taken from Gong and Gao (2013),
where the similar investment and price functions, as in this paper, are estimated
using annual data from China. The parameter ε is taken from Christiano et al.
(2005). The parameter m̄ can be regarded as the average gross rate of growth
of the money supply and is therefore set within a reasonable range given the
data on the Chinese economy. The parameters s and δ are also set within their
reasonable ranges. We assume that the parameters c′ and c∗ are initially equal,
which indicates that in the steady state Ū , the marginal cost curve cuts the
average cost curve at this minimum (see Figure 4). The values of c′, c∗, and ξi
are then computed based on the assumption that the steady states Ū and p̄ are
equal to 0.8 and 1.05, respectively. In particular, given Ū = 0.8, p̄ = 1.05 and
the other benchmark parameters, we compute c′, c∗, and ξi as follows:

c∗ = c′ =
p̄

ε
[
δθ + (1− δθ) Ū

] (56)

ξi = ξm(m∗ − p̄)− (sB − ξu)Ū (57)

Thus, the benchmark case, for which the parameters are given in Table 1,
is the case that most closely matches the actual Chinese economy. Given these
benchmark parameters, we find that the bifurcation value θ∗, as expressed in
(55), is equal to 0.48985556. Therefore, the benchmark parameter θ in Table 1
is larger than θ∗.

Figure 7 simulates the model economy using the benchmark parameters with
the initial condition set at 95% of the corresponding steady states. As the figure
shows, when ξm is not large and θ > θ∗, that is, price adjustment does not have
a significant effect on investment while pricing is too sticky, the economy is
divergent, as in the Harrodian economy.
In contrast, in the case of θ < θ∗, or if the price adjustment is somehow

more flexible, the economy can be stabilized through monotonic convergence to
the steady state, as shown in Figure 8.
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Figure 7: The dynamics of (pt, Ut) in the benchmark case ( θ > θ∗)

Figure 8: The dynamics of (pt, Ut) in the case of real eigenvalues, and θ < θ∗

(θ = 0.45)
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Figure 9: The dynamics of (pt, Ut), in the case of complex eigenvalues and
ξm < ξ∗m (ξm = 0.3)

6.6 Stability when ξm is Large

Next, we consider the situation where condition (52) is not satisfied. For this, we
allow ξm be increase until condition (52) is no longer satisfied. As expressed in
Proposition 4, in this case, the two eigenvalues λ1 and λ2 are complex conjugate,
indicating that cyclical behavior is expected in the economy. However, the cycle
can be either convergent or explosive depending on the increase in ξm.
Suppose that parameter ξm increases from 0.04 to 0.3 while the other para-

meters remain at their benchmark level, as illustrated in Figure 9. In this case,
the economy cyclically converge to the steady state.

However, when ξm increases too much, for instance to 0.35, the economy
will become cyclically explosive as shown Figure 10. This indicates that a Hopf-
bifurcation exists between 0.3 and 0.35 with respect to parameter ξm. Indeed,
given the other benchmark parameters in Table 1, the Hopf-bifurcation ξ∗m can
be computed by (54), from which we find that ξ∗m = 0.32253297.

We thus find that in the absence of a government stabilization policy, the sta-
bility of the economy depends on two parameters, θ and ξm (given the others),
that reflect the strength of the price adjustment of the stabilization mechanism.
Specifically, if ξm (which reflects the effectiveness of price adjustment on in-
vestment) is not large enough to generate cyclical behavior in the economy, the
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Figure 10: The dynamics of (pt, Ut), in the case of complex eigenvalues and
ξm > ξ∗m (ξm = 0.35)

economy could be monotonically divergent as in the Harrodian economy. This
possibility becomes large when θ (which reflects the stickiness of pricing) tends
to be larger, or the price becomes more stickier. Another possible case of in-
stability occurs when ξm is too large. In this case, the economy is cyclically
explosive. Empirically, at least according to the data from China, the first type
of instability is more likely to occur.

7 The Model with Monetary Policy

In this section, we introduce a monetary policy into the model. Our purpose is
to exam whether the economy can be stabilized if the model initially is monoton-
ically divergent.

7.1 The Steady State

After introducing the monetary policy, the system is composed of (26), (47),
and (49). The proposition with regard to the steady state of our new system
(mt, Ut, pt) is given as follows.

Proposition 5 Suppose that the cost function c(U) can be linearized as c′U
around the steady state. Then, there is a unique steady state (m̄, Ū , p̄) for the
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system (mt, Ut, pt) composed of (26), (47) and (49), which can be expressed as m̄
Ū
p̄

 =

 1 0
κp
κm

− ξm
sB−ξu

1 ξm
sA−ξu

0 − (1− δθ) εc′ 1


−1 

κp
κm
p∗ +m∗

−ξi
sB−ξu
εc∗δθ


The proof of this proposition is trivial and thus is not provided here.

7.2 Stability

Next, we examine the stability of the system (mt, Ut, pt). The proposition is as
follows.

Proposition 6 Let

σ =
ξmεc

′(1− θ) (1− δθ)
sB

a =

(
1− ξuθ

sB
− σ

)[
1 + (1− κm)

2

(
ξuθ

sB
+ σ

)
− (1− κm)

(
θ +

ξu
sB

)]
b =

[
(1− κm)

(
2
ξuθ

sB
+ 2σ2 − 1

)
− θ +

ξu
sB

]
If the following conditions hold,

(2− κm)

[
(1 + θ)

(
1 +

ξu
sA

)
+ σ

]
> κpσ > −κm

[(
1− ξu

sA

)
(1− θ) + σ

]
(58)

a+ bσκp − (σκp)
2

> 0 (59)

then the system (mt, Ut, pt) is asymptotically stable at the steady state (m̄, Ū , p̄).
Furthermore, if (58) is satisfied, the system undergoes a Hopf-bifurcation at
a+ bσκ− (σκ)

2
= 0.

The proof of this proposition is given in the appendix.
The economic meaning of this proposition can be expressed as follows. First,

we find that
(

1− ξu
sB

)
(1−θ)+σ on the right side of condition (58) is negative if

condition (53) in proposition 4 is not satisfied or if the economy is monotonically
divergent without a monetary policy. Therefore, condition (58) indicates that
if the economy starts off monotonically divergent without a monetary policy,
then the monetary policy should be exerted (i.e., κp > 0) for the economy to be
stabilized. However, the effect of the monetary policy (represented by κp given
κm) should be in appropriate: neither absent, i.e., κp > 0, nor over-exerted, i.e.,

κp < (2− κm)

[
(1 + θ)

(
1 +

ξu
sB

)
+ σ

]
/σ

Next, we examine condition (59). Denote the left side of condition (59) as
f(κp), that is, f(κp) ≡ a+bσκp−(σκp)

2. Apparently, f is quadratic in κp. This
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Figure 11: The quaratic function of f(κp): the identification of birfurcations

indicates that there are two possible roots for f(κp) = 0, and hence two possible
bifurcations. Without losing generality, we denote these two bifurcations as κ1p
and κ2p, with κ

1
p < κ2p. As f

′′(κp) < 0, the possible shape of f(κp) is shown
in Figure 11. Thus, if κp > κ2p or κp < κ1p, the economy cannot be stabilized.
The economy can only be stabilized at the steady state if κ1p < κp < κ2p so that
f(κp) < 0 (provided that κp > 0).

7.3 Numerical Simulation

The same parameters (Table 1) are again used for our numerical simulation with
c′, c∗, and ξi still computed by (56) and (57), respectively. The exception is
that p̄ is now replaced by p∗, which we set to 1.05, and Ū is still given by 0.8.
We find that in this case, p̄ = 1.05 and m̄ = m∗ = 1.13. We also know that
in this case, if there is no monetary policy (or κp = κm = 0), the economy is
monotonically divergent, as shown in Figure 7. We set κm = 0.433, which is the
estimated parameter by Gong and Lin (2008).
Given these parameters, we compute the two bifurcations κ1p and κ2p ac-

cording to f(κp) = 0. We find that κ1p is negative, equal to -32.143 and κ
2
p is

positive, equal to 1.207 (see Figure 11). Therefore, we only need to exam how
the perpetuation of κp from κ2p can change the stability of the economy.
Figure 12 provides the simulation when κp < κ2p. As the figure shows, and as

we expected in this case, the economy can be stabilized. Figure 13 simulates the
dynamics of (mt, Ut, pt) when κp > κ2p. In this case, the economy is cyclically
explosive, indicating that the effort of monetary policy is too strong.
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Figure 12: The dynamics of (mt, pt, Ut), the case of κp < κ1p (κp = 1.13)

Figure 13: The dynamics of (mt, pt, Ut), the case of κp > κ2p (κp = 1.3)
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8 Discussion and Conclusion

We aim to answer two main questions in this paper. First, is there a destabi-
lization mechanism in a market economy? Second, if such as mechanism exists,
how strong is its destabilization force, and is it possible for it to be stronger
than the stabilizing force of price adjustment?
Regarding to the first question, we find that a mechanism does exist that

destabilizes the economy. We demonstrate an important example: the invest-
ment adjustment underlying Harrod’s instability (or knife-edge) puzzle (Harrod,
1939). We construct a dynamic optimization model from which the investment
function is derived. On the basis of this investment function, we prove that a
destabilization mechanism in a simple economy (such as Harrodian economy)
exists due to the adjustment in investment.
With respect to the second question, we first find that the price adjustment

is differ between neoclassical and Keynesian economics. Neoclassical economics
assumes a competitive economy, in which case, stabilization by price adjustment
is very effi cient and the economy can always be stabilized. However, Keynesian
economics assumes a non-competitive economy in which price adjustments may
be less frequency, but sticky. This indicates that it is quite possible that a price
adjustment may not exert a suffi ciently strong force to overcome the destabiliz-
ing force. Therefore, the economy could become unstable without any further
stabilization mechanism, such as from government intervention. We also iden-
tify the critical conditions (reflected by the stickiness θ and the effectiveness
ξm of price adjustment) under which the economy becomes unstable without a
government stabilization policy.
Finally, we should point out that our discussion of stabilization and destabi-

lization mechanisms may not offer a complete explanation, because other similar
mechanisms may exist. Therefore, rather than aiming to answer the question
of whether government stabilization policy is necessary, we merely demonstrate
that business cycles can be understood as an interaction between stabilizing
and destabilizing mechanisms, yet the latter are often ignored in the economics
literature.

9 Appendix

9.1 Proof of Proposition 1

Expressing Ij,t+k in (20) in terms of (21) and cj,t+k in terms of (18), we find
that the problem (20) can be re-written as

maxE

∞∑
k=0

βk {Pj,t+kYj,t+k − Pt+kcj,t+k(Uj,t+k)Yj,t+k − (1 + r)Pt+k [Kj,t+k − (1− dj)Kj,t+k−1]}
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Note that from (14) we find that Uj,t+k is also a function of Kj,t+k−1. In
particular,

∂Uj,t+k
∂Kj,t+k−1

= − Yj,t+k

B (Kj,t+k−1)
2 = −B (Uj,t+k)

2

Yj,t+k

Therefore, the problem becomes the choice of the sequence {Kj,t+k}∞k=0. The
Euler equation for this problem can be written as

EβkPt+k

[
(1− α)ω

α
(Uj,t+k)

1−α
α −1B (Uj,t+k)

2 − vj (Uj,t+k)
−2

(Uj,t+k)
2

+ (1 + r)(1− dj)
]

− Pt+k−1(1 + r)βk−1 = 0

which can further be simplified as

Eβπ

[
(1− α)ω

α
(Uj,t+k)

1
α B − vj + (1 + r)(1 + dj)

]
= 1 + r

This equation allows us to obtain

(Uj,t+k)
1
α =

(1 + r)/(βπ)− (1 + r)(1− dj) + vj
1−α
α Bω

We therefore prove the proposition.

9.2 Proof of Proposition 2

Substituting (35) into (34), we obtain

max
P∗j,t

E

∞∑
k=0

βkθk

[
πkP ∗j,t

(
Pt+k
πkP ∗j,t

)ε
Yt+k − Pt+kc(Uj,t+k)

(
Pt+k
πkP ∗j,t

)ε
Yt+k

]
The first-order condition can thus be expressed as

E

∞∑
k=0

βkθk

πk( Pt+k
πkP ∗j,t

)ε
Yt+k − επkP ∗j,t

(
Pt+k
πkP ∗j,t

)ε−1
Yt+k

Pt+k

πk
(
P ∗j,t
)2
+

E

∞∑
k=0

βkθk

εPt+kc(Uj,t+k)

(
Pt+k
πkP ∗j,t

)ε−1
Yt+k

Pt+k

πk
(
P ∗j,t
)2
 = 0

which can be simplified as

E

∞∑
k=0

βkθk

[
πk(1− ε)Yj,t+k + εPt+kc(Uj,t+k)

Yj,t+k
P ∗j,t

]
= 0

Solving the above equation for P ∗j,t, we obtain

P ∗j,t =
εE
∑∞
k=0 β

kθk [Pt+kc(Uj,t+k)Yj,t+k]

(ε− 1)E
∑∞
k=0 β

kθk [πkYj,t+k]
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Using assumptions (??) to (40), the above equation can further be written as

P ∗j,t =
εE
∑∞
k=1 β

kθkπkyk
[
Ptc(U

∗
j )Yj,t

]
+ εE [Ptc(Ut)Yj,t]

(ε− 1)E
∑∞
k=0 β

kθkπkyk [Yj,t]

=
εE
∑∞
k=0 β

kθkπkyk
[
Ptc(U

∗
j )Yj,t

]
+ εE [Ptc(Ut)Yj,t]− ε

[
Ptc(U

∗
j )Yj,t

]
(ε− 1)E

∑∞
k=0 β

kθkπkyk [Yj,t]

=
εβ̃Pt−1c(U

∗
j ) + εPt−1c(Ut−1)− εPt−1c(U∗j )

(ε− 1)β̃

Simplifying the above, we obtain (41) as in the proposition.

9.3 Proof of Proposition 3

Let pt = pt−1 = p̄ and Ut = Ut−1 = Ū . Equation (49) allows us to obtain

p̄ = εc∗δθ + (1− δθ) εc′Ū (60)

This is the same as equation (51) in the proposition. Meanwhile, from (48),

sBŪ = −ξi + ξuŪ + ξmm̄− ξmp̄ (61)

Substituting (60) into (61), we obtain

sBŪ = −ξi + ξuŪ + ξmm̄− ξm
[
εc∗δθ + (1− δθ) εc′Ū

]
Re-organizing the above equation, we obtain (50) as in the proposition.

9.4 Proof of Proposition 4

First, we prove section 1 of the proposition. For notational convenience, we
denote

a ≡ ξu
sB

θ +
ξm
sB

(1− θ)ε (1− δθ) c′, a > 0 (62)

Thus, for λ1 and λ2 to be real, we require that(
ξu
sB

+ θp

)2
− 4a > 0

Re-organizing the above equation, we obtain condition (52) as in the proposition.
Suppose now that

1 > λ1 ≥ λ2 > −1

is satisfied. Then for 1 > λ1, we should have

1

2

 ξu
sB

+ θ +

√(
ξu
sB

+ θ

)2
− 4a

 < 1
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which can further be written as√(
ξu
sB

+ θ

)2
− 4a < 2− ξu

sB
− θ (63)

Next, for λ2 > −1, we have

1

2

 ξu
sB

+ θ −

√(
ξu
sB

+ θ

)2
− 4a

 > −1

which can further be written as

ξu
sB

+ θp + 2 >

√(
ξu
sB

+ θp

)2
− 4a (64)

Comparing (63), we find that if condition (63) is satisfied, condition (64) must
be satisfied. Thus, we only need to continue with condition (63).
Taking the square of both sides of (63), we obtain(

ξu
sB

+ θ

)2
− 4a <

(
2− ξu

sB
− θ
)2

Re-organizing the above:(
ξu
sB

+ θ

)2
−
(

2− ξu
sB
− θ
)2

< 4a

which can further be simplified as

ξu
sB

+ θ − 1 < a

Expressing a in terms of (62), the above equation can be re-written as

0 < (1− θ)
(

1− ξu
sB

)
+ (1− θ) ξm

sB
εc′ (1− δθ)

which is indeed condition (53) as in the proposition. We thus prove section 1 of
the proposition.
Next, suppose condition (52) is not satisfied. Assume that |λ1,2|, which is

indeed a as expressed in (62), is equal to 1, that is,

ξu
sB

θ +
ξm
sB

(1− θ) (1− δθ) εc′ = 1

Solving the above equation for ξm, we obtain

ξ∗m =
sB − ξuθ

εc′(1− θ) (1− δθ) (65)
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Given this ξ∗m, we now prove that the eigenvalue λ1,2 are complex conjugate.
This requires that a21 − 4a2 < 0, that is,(

ξu
sB

+ θ

)2
− 4

[
ξu
sB

θ +
ξ∗mεc

′

sB
(1− θ) (1− δθ)

]
< 0 (66)

Expressing ξ∗m in (66) in terms of (65), we obtain

ξu
sB

+ θ < 2

This is the condition (2− θ) sB − ξu > 0 as in the proposition. We therefore
prove section 2 of the proposition.

9.5 Proof of Proposition 6

The Jacobian matrix of system (mt, Ut, pt) can be written as

J =

 1− κm 0 −κp
ξm
sB

ξu
sB − ξmsB

0 (1− θ) (1− δθ) εc′ θ


The characteristic function det |λI − J | = 0 takes the form of

λ3 + c1λ
2 + c2λ+ c3 = 0

where

c1 = −
(

1− κm +
ξu
sB

+ θ

)
c2 =

ξu
sB

θ +
ξm
sB

(1− θ) (1− δθ) εc
′
+ (1− κm)

(
θ +

ξu
sB

)
c3 = − (1− κm)

ξu
sB

θ − (1− κm − κp)
ξm
sB

(1− θ) (1− δθ) εc
′

For the convenience of our proof, we first establish the following theorem
provided by Elaydi (1996) and Sonis (2000):

Theorem 7 Let

π1 = 1 + c1 + c2 + c3

π2 = 1− c1 + c2 − c3
π3 = 1− c2 + c1c3 − c23

If πi(i = 1, 2, 3) > 0, and c3 < 3, then the module of eigenvalues of J is less
than 1. Meanwhile, the system undergoes a bifurcation at π3 = 0.
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Applying the above theorem, we find that

π1 = κm

(
1− ξu

sB

)
(1− θ) + (κp + κm)σ

π2 = (2− κm) (1 + θ)

(
1 +

ξu
sB

)
+ (2− κm − κp)σ

π3 = a+ bσκp − (σκp)
2

Thus, π1 > 0⇔ κpσ > −κm[(1− ξu
sB )(1− θ) + σ], and π2 > 0⇔ (2− κm) [(1 +

θ)(1+ ξu
sB )+σ] > κpσ. Putting π1 > 0 and π2 > 0 together, we obtain condition

(58) as in the proposition. π3 > 0⇔ a+ bσκp− (σκp)
2
> 0, which is condition,

(59) as in the proposition.
We thus complete the proof of the proposition.
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