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Abstract

This paper develops a pre-entry investment and random search framework

to jointly study the investment incentives and trading efficiency. A seller en-

trant can make unobservable investments to decrease the production cost be-

fore searching for buyers. In the unique steady state equilibrium, investment

and price dispersion emerge simultaneously with ex ante identical buyers and

sellers. Despite the positive investments, when buyers make take-it-or-leave-

it offers, the equilibrium payoffs and social welfare are constant given any

search friction and equal to the equilibrium values when investments are ob-

servable (indicating no investment). This novel property remains true even

when the investment strategy becomes socially optimal as search frictions di-

minish.
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1 Introduction

Investment incentives and trading outcomes with search frictions have been vastly
studied in the holdup and search literature, respectively. This paper investigates
an environment in which these two issues are naturally connected: sellers need to
decide how much to invest to decrease their production costs and then start to search
for buyers. Sellers are incentivized by the return on investments that they can reap,
which is determined through search and bargaining in the market. At the same
time, trading outcomes depend on investments, as that govern the characteristics
of entrants. By exploring this interdependency, we link the Diamond Paradox with
the insights into the interplay of investments and bargaining. We show that a lot of
equilibrium predictions on investments and trade efficiency are drastically different
if we overlook this interdependency.

In this paper, we focus on large markets in which a great number of buyers and
sellers search for trading partners. In a large market, the investments are less likely
to be relationship-specific or perfectly observable by buyers.1 We should therefore
expect the seller entrants to have stronger incentive to invest in the described envi-
ronment than in an environment with relation-specific and observable investments.
It is indeed the case in equilibrium. Surprisingly, we find that such positive invest-
ments do not necessarily lead to welfare improvement under realistic settings. In
particular, when buyers have all of the bargaining power, there is no welfare gain at
all. This result remains true even when the investments become socially optimal as
search frictions vanish.

The model we propose is a discrete time infinite horizon random search model
with exogenous entry and pre-entry investments. At the beginning of each period,
there is one unit mass of ex ante identical sellers and buyers entering the market.
A buyer entrant demands one unit of output and receives utility y0 > 0 from con-
suming it. A seller entrant is endowed with the technology to produce one unit of

1An example could be a market that involves a large number of intermediate suppliers and many
retailers. A supplier can invest to find cheaper producers before searching for retailers. Such invest-
ments are not relation-specific, as they increase the surplus from trade with any retailer. Moreover,
a retailer is unlikely to be perfectly informed about the cost of a supplier it randomly meets. An-
other example is the labor market. New graduates, even those with the same academic degree, have
heterogeneous costs of labor, partly due to their different levels of costly training.
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output at cost x0(∈ (0, y0)) and can invest to reduce the production cost before en-
try. We denote the production cost resulting from the socially optimal investment as
x∗(∈ (0, x0)).2 After the sunk investments have been made, all agents (entrants and
incumbents) randomly form one-buyer-to-one-seller pairs. Within each pair, the
buyer makes a take-it-or-leave-it offer without observing the seller’s investments.
If the offer is accepted, then production takes place and both agents leave the mar-
ket permanently. Otherwise, the pair is dissolved and both agents search in the
next period. At the beginning of the next period, there are new buyers and sellers
contemplate entering and the economy repeats the same matching and bargaining
process. We assume that agents are impatient and the time between two succes-
sive periods is the source of search friction. In the model, agents are referred to as
buyers and sellers. However, the agents can have more general roles such as firms
and workers, retailers and intermediate suppliers, foreign importers and domestic
exporters, etc.

This baseline model produces three main results. First, focusing on the steady-
state equilibrium, the equilibrium exists and is unique. In equilibrium, ex ante iden-
tical seller entrants use mixed strategy when making investments and the resulting
distribution of production costs has the support [x∗, x0]. Ex ante identical buyers
also use mixed strategy when offering prices and the resulting distribution of prices
is non-degenerate.

Second, although the average amount of investments is positive, the agents’ ex
ante payoffs and the social welfare equal to the equilibrium values when invest-
ments are observable (indicating no investment) and are constant given any search
friction. The positive investments create ex post gains. However, the corresponding
ex ante gains depend on the speed of trade. In equilibrium, the ex post gains are
completely dissipated by delays in trade for any given search friction, due to the
possibility of a mismatch between the seller’s reserve price and the buyer’s offer.
This result demonstrates that more efficient investments do not necessarily lead to
a higher social welfare.

Third, we investigate how equilibrium distributions vary as search frictions di-

2The production cost x∗ resulting from the socially efficient investments will be defined shortly
in the next section.
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minish and gather a set of empirically testable predictions. First, the investment
strategy becomes more efficient in the sense that the proportion of entrants who
invest efficiently increases to one. In contrast, the distribution of the incumbents’
pre-entry investments becomes less efficient and converges to a point mass at zero
investment. It is because the buyers price more aggressively as search frictions de-
crease. The relative trading speed between a seller with high and low investments
enlarges and consequently the market accumulates more underinvested sellers, de-
spite of the fact that more entrants invest efficiently.

In sum, this paper highlights the importance of the interaction between the pre-
entry investments and trading outcomes. Notice that many of the above results
would be drastically different if we separate the two. For instance, it is a robust
result that the trading outcome becomes efficient as search frictions vanish if we
treat the type distribution of the sellers as exogenously given. In addition, more
efficient investments most likely improve the social welfare if the trading outcomes
are held as fixed.

The baseline model is extended along two dimensions to incorporate the pos-
sibilities of two-sided investments and two-sided offers, respectively. In the first
extension, buyer entrants could also invest before entry to raise their valuations of
the good. The results of the baseline model regarding the sellers’ investment s-
trategy continue to hold. Moreover, we have a set of new results for the buyer’s
investment strategy. Most significantly, although the buyers have all of the bargain-
ing power, they still underinvest and mix over an interval of investments given any
search friction.

The model can be extended to allow sellers to make take-it-or-leave-it offers
occasionally. The social welfare is still completely determined by the lowest invest-
ment level, which is now positive as a seller makes offer with a positive probability.
Any welfare gain that could be generated from investments above the minimum
level is dissipated by delays in trade. Fortunately, when sellers make offer with a
probability bounded away from zero, the minimum investment level and the social
welfare converge to the first best as search frictions vanish.

Related Literature
This paper is related to random search models with heterogeneous agents. Al-
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brecht and Vroman (1992) demonstrate that when seller entrants are exogenously
heterogeneous, a single price can never be an equilibrium. The current paper com-
plements their paper by showing that such heterogeneity can emerge endogenously
due to diverse prices in equilibrium.

The searching stage of the current model is similar to settings of voluminous
works on search and bargaining games with asymmetric information (e.g., Rubin-
stein and Wolinsky (1990), Satterthwaite and Shneyerov (2007), Shneyerov and
Wong (2010a), Lauermann (2012) (2013), etc). One central topic of the literature is
to understand how frictions affect equilibrium efficiency. For instance, Lauerman-
n (2013) shows that when there exists competitive pressure, equilibrium outcomes
converge to perfect competition as search frictions disappear, indicating no delay
in trade. On the contrary, delays in trade in the current setting is most severe as
search frictions become arbitrarily small, and the social welfare in equilibrium is
constant over any search friction. The reason for this drastically different predic-
tion is the following. As search frictions vary in the current model, the distribution
of entrants’ production costs must change to ensure the buyers’ indifference con-
dition. Conversely, the distribution of entrant’s production costs is fixed over all
search frictions in other works. This comparison signifies the importance of the
interaction between pre-entry investments and trade.

In addition, this paper is related to the literature on the hold-up problem. Ace-
moglu and Shimer (1999) also studies how investment incentives and trading out-
comes are jointly determined when there is search friction. Unlike us, they assume
that investments are observable, agents use Nash bargaining to split the surplus and
entry is endogenous, which lead to quite different equilibrium outcomes. How-
ever, we share one common result: the conditions for efficient trading, the Ho-
sios’condition in theirs and the arbitrarily small search frictions in ours, are no
longer sufficient if entrants’ characteristics are endogenous.

The investment incentives when investments are unobservable are also exam-
ined by Gul (2001) within a Coasian setting where a buyer’s valuation is determined
by his or her unobservable investments. Similar to ours, the equilibrium investment
strategy is a mixed strategy and becomes efficient as the time between two rounds
shrinks to zero. The difference is that in Gul (2001) there is no bargaining delay in
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Figure 1: Timeline

the limit and the social welfare converges to the first best. This difference result-
s from the distinct trading environments. We focus on big markets. Because the
sellers who invest more trade faster, the investment distribution of incumbents is al-
ways less efficient than that of entrants. Hence, there are delays in trade even with
almost efficient investments. On the other hand, Gul (2001) focuses on one-to-one
trade. The investment distribution of the incumbent and entrant are by definition
identical. As a result, as long as the incentive of efficient investments is guaranteed,
the equilibrium outcome is socially optimal.

The rest of this paper is organized as follows. The model is introduced in Sec-
tion 2, in which we also solve the first best and observable investment benchmark
cases. Section 3 derives the equilibrium conditions and proofs the existence and
uniqueness of the steady state equilibrium. The equilibrium is characterized in
Section 4. Section 5 examines the two-sided investment extension, and Section 6
considers another extension with two-sided offers. Robustness and other extensions
are discussed in Section 7. Finally, Section 8 concludes the paper.

2 The Model and Benchmark Specifications

2.1 The Model

We consider a discrete time infinite horizon random search model with pre-entry
investments. Through out this paper, we focus on the steady state equilibrium.
Therefore, we omit the time subscript whenever is not confusing. The timeline of
this game is illustrated in Figure 1.
Player: The players are sellers and buyers. At the beginning of each period, one
unit mass of new sellers and buyers enter the market. A buyer demands one unit

6



of the output and yields utility y0 > 0 from the consumption; a seller entrant is
endowed with the technology that produces one unit of output at a cost x0 > 0.
We focus on the “gap” case throughout this paper, i.e., the (minimum) surplus from
trade y0 − x0 is assumed to be strictly positive.
Strategy: Before entering the market, a seller can invest c(x) to decrease the pro-
duction cost to x ≥ 0. We assume c(x0) = c′(x0) = 0, c′(0) < −1, and for any
x < x0, c(x) is of class C1, strictly decreasing and strictly convex. All of the en-
trants on both sides then join the incumbents who did not exit in the last period. The
market sizes on both sides are assumed to be the same. In each period, one buyer is
randomly matched with one seller and vice versa. The buyer in each pair makes a
take-it-or-leave-it offer p, which is a monetary transfer from the buyer to the seller,
and the seller decides whether to accept it.

Therefore, a seller’s strategy consists of two components: an investment strat-
egy governed by a CDF Fe(x) and a reserve price mapping rS(x), where Fe(x)

measures the probability that the investment is weakly higher than c(x) and rS(x)

is the lowest price that a seller with cost x is willing to accept. A buyer’s strategy
is a price offer governed by a CDF H(p), where H(p) equals the probability of
offering a price weakly lower than p.
Preference: If the offer is accepted, then one unit of output is produced and sold,
which leaves the seller payoff p − x and the buyer payoff y0 − p. Both agents exit
the market permanently. Otherwise, the pair is dissolved and both agents search in
the next period.

The time between two successive periods is t and we assume that the discount
rate for all agents are the same, which is denoted as r1. Therefore, the discount
factor is β = e−r1t ∈ [0, 1). We say that the search frictions are small if t is small
or equivalently if β is large.
Information: A crucial assumption of this paper is that the buyers have no infor-
mation about investments. In addition, the matching is anonymous.

2.2 Benchmark Specifications

The First Best
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We first characterize the efficient allocation, which consists of both the efficient
investment and trade.

At the search stage, a social planner would find it optimal to always conduct
trade between any two agents given any cost distribution, as the surplus from the
trade is always positive and postponing trading is costly due to discounting.

Given that trades take place immediately at the search stage, if a seller invests
to decrease his or her cost to x, then he or she increases the social welfare by x0−x
with an investment cost c(x). A social planner thus chooses x∗ implicitly defined
by c′(x∗) = −1 so that the marginal cost of investment equals the marginal benefit.
From the assumptions on c(x), it is easy to verify that x∗ ∈ (0, x0).
Observable Investments

Consider the situation in which investments are observable. Following the same
logic used in Diamond (1971), as the buyers have all of the bargaining power, a
seller receives zero search stage payoff regardless of his or her production cost.
The reasoning is as follows. The buyer in the current match and buyers in al-
l future matches will offer exactly the seller’s production cost plus the discounted
continuation payoff, as the buyers can observe the seller’s production cost. With
the discount factor being strictly less than one, this infinitely repeated discounting
drives the search stage payoff down to zero. The sellers therefore have no incentive
to invest.

Therefore, in the unique equilibrium, no seller invests and all of the buyers offer
a price x0. Investments are inefficient and trades are efficient.

This analysis shows why unobservability is necessary to restore investment in-
centives. When buyers cannot observe (or perfectly infer in equilibrium) invest-
ments, a seller may receive a price offer larger than his or her reservation price.
Such a possibility creates rents for sellers. We illustrate this intuition in detail in the
next section.

3 The Steady State Equilibrium

Let us now solve the steady state equilibrium in the decentralized market. A steady
state equilibrium consists of a seller’s investment strategy when he or she is an
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entrant and reserve price function when he or she is an incumbent, a buyer’s price
offer distribution and a distribution of incumbents’ production costs. Following the
literature, we will call the last distribution as stationary cost distribution.

3.1 The Seller’s Problem

At the search stage, a seller with a production cost x chooses the lowest price he
or she is willing to accept, i.e., the reserve price rS(x), to maximize his or her
search stage payoff U(x). Given a price offer distribution H(p), the seller’s trading
probability is 1−H(rS(x)) + Pr(p = rS(x)), which is decreasing in rS(x). Here,
Pr(p = rS(x)) is the probability of a price offer that equals rS(x) according to
H(p). The maximization problem of a type x seller can be summarized as follows:

U(x) = max
r
{(E(p | p ≥ r)− x)(1−H(r) + Pr(p = r)) + (H(r)− Pr(p = r))βU(x)}

(1)

Solving the above problem, the reserve price rS(x) can be calculated as follows:

rS(x) = x+ βU(x) (2)

A seller is willing to accept any price that is high enough to cover his or her op-
portunity cost of trading, i.e., the production cost x plus the discounted continuation
payoff.

A more efficient seller should have a higher search stage payoff U(x), as invest-
ments are costly. This more efficient seller is willing to accept lower price offers in
equilibrium, as the opportunity cost of delay is higher. Moreover, the least efficient
seller should receive zero search stage payoff. No buyer in equilibrium would offer
prices higher than his or her reserve price. Then the insights in Diamond Paradox
implies that the least efficient seller should receive zero search stage payoff. Denote
the highest production cost on the support as x̄. The following lemma confirms the
preceding conjectures.

Lemma 1. In any steady state equilibrium, U(x) is strictly decreasing and contin-

uous in x, with U(x̄) = 0. rS(x) is strictly increasing and continuous in x.
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Unless otherwise mentioned, all of the proofs are gathered in the Appendices.
Lemma 1 implies that x̂(p), the inverse function of rS(x), is well defined, con-

tinuous and strictly increasing. Function x̂(p) specifies the highest type of a seller
who is willing to accept a price p.

Lemma 1 also implies that the highest cost on the support equals the initial cost,
i.e. x̄ = x0. A seller with the highest cost is fully extracted in the search stage and
therefore has no incentive to invest ex ante. In other words, the holdup problem
holds for the least efficient sellers, although their investments are unobservable and
they can search for other buyers.

Corollary 1. In any steady state equilibrium, the least efficient sellers invest zero,

x̄ = x0.

The least efficient sellers’ ex ante payoff therefore equals U(x̄) − c(x0) = 0.
Recall that the investment strategy is governed by Fe(x). In equilibrium, ex ante
identical sellers must be indifferent over any x on the support of Fe, and weak-
ly prefer these x to any other x that is not on the support. As can be seen from
(1), the search stage payoff U(x) depends on the price offer distribution H(p). In
equilibrium, H(p) must be such that

U(x)− c(x) = 0, for any x on the support of Fe(x) (3)

U(x)− c(x) ≤ 0, for any x not on the support of Fe(x)

3.2 The Buyer’s Problem

A buyer chooses what price to offer. We know from the previous section that any
seller with a cost lower than x̂(p) is willing to accept p. We use F (x) to denote
the CDF of the stationary cost distribution, which equals the probability that the
production cost of a randomly drawn incumbent is weakly lower than x. The prob-
ability of trade therefore equals F (x̂(p)) for price p.

In equilibrium, F (x) must be such that it makes a buyer indifferent over any p
on the support of H(p). We use π to denote the equilibrium payoff of a buyer. Then
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any p on the support solves the following maximization problem:

π = max
p
{(y0 − p)F (x̂(p)) + (1− F (x̂(p)))βπ} (4)

3.3 The Seller’s Investment Strategy

The last piece of the model is the distribution of seller entrants’ production cost,
which is also the seller’s investment strategy.3 In a steady state equilibrium, the
measure of outflow of any type must equal the measure of inflow of the same type
to preserve the stationary distribution over time. A seller with a cost x leaves the
market if he or she receives an offer that is weakly higher than rS(x) (which happens
with a probability 1−H(rS(x))).4 Meanwhile, the measure of entrants with a cost
lower than x is Fe(x). Denote the lowest production cost on the support as x. The
steady state equilibrium requires that for any x on the support,

Fe(x) =
F (x)−

∫ x
x
H(rS(x̃))dF (x̃)

1−
∫ x0
x
H(rS(x̃))dF (x̃)

(5)

3.4 Equilibrium Existence and Uniqueness

Let us first summarize the dynamic of a steady state equilibrium. At any period,
the stationary cost distribution F (x) is such that it keeps buyers indifferent to price
offers. The players’ trading strategy then determines the cost distribution of those
who exit. At the beginning of the next period, the new generation of seller entrants,
who are indifferent to these investments given the price distribution H(p), choose
the investments so that they exactly replace those who exit. This way, the stationary
cost distribution is preserved over time.

Proposition 1. In any steady state equilibrium, the price offer distribution H(p),

the seller’s investment strategy Fe(x) and the stationary cost distribution F (x) have

3As there is one unit mass of entrants, we obtain the equivalence between the distribution of
entrants’ costs and the investment strategy when we abuse the law of large numbers as usual.

4To be more precise, the probability of receiving an offer weakly higher than rS(x) should be
1 −H(rS(x)) + Pr(p = rS(x)). However, as is proved in the next section, there is no mass point
on the support of H(p). To simplify the notation, we write down the probability here as if there is
no mass point.

11



the following properties:

1. F (x) and Fe(x) have support [x∗, x0] with the unique point mass at x∗.

2. H(p) has support [rS(x∗), rS(x0)] and is atomless;

Although all agents are identical ex ante, proposition 1 shows that the stationary
price offer distribution and the investment strategy are non-degenerate. The unob-
servability of the investments is the key behind this result. Suppose otherwise, i.e.,
that all buyers offer the same price. The sellers become residual claimants facing
the single price, as the unobservability of investments prevents any further exploita-
tion. They either invest efficiently or invest zero. If the price is not high enough
to cover the investment cost plus the production cost (p < c(x∗) + x∗), then the
sellers invest zero. In addition, because c(x∗) + x∗ < x0, the price is lower than
the initial production cost. As a result, the sellers reject the offer after entering the
market. This leaves the buyers with zero profit. Therefore, to earn a positive profit,
the buyers must offer a price p̂ higher than c(x∗) + x∗ so that the sellers invest ef-
ficiently ex ante and agree to accept the price. However, given that all of the other
buyers offer the price p̂, a buyer would find it profitable to deviate to a slightly low-
er price. Due to discounting, the matched seller is still willing to accept the lower
price. Hence, a single price can never be an equilibrium. To support such dispersed
price distribution, the investment distribution also has to be non-degenerate.

We may also suspect a gap on the support of the price and stationary cost dis-
tributions. For instance, it may be the case that two prices p1 and p2 are on the
support, but the prices on the interval (p1, p2) are not offered because the sellers
with types x ∈ (x̂(p1), x̂(p2)) are not in the market and hence the buyers do not
gain from offering their reserve prices. Meanwhile, no sellers choose to become
type x ∈ (x̂(p1), x̂(p2)) because their reserve prices are not offered. This intuition
unfortunately neglects the indifference condition: a seller must be indifferent be-
tween x̂(p1) and x̂(p2) and weakly prefer them to any x in the interval. As no price
between p1 and p2 is offered, U(x) increases linearly on the interval (x̂(p1), x̂(p2)).
However, the investment cost function c(x) is strictly convex. Hence, the indiffer-
ence condition can never hold with a gap.
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Proposition 1 also claims that there is no mass point on the price distribution.
Any mass point results in a jump in the probability of trade, which in turn leads to a
kink in U(x). However, the investment cost function c(x) is of class C1. This again
contradicts the indifference condition.

Of course, the preceding reasoning is based on the assumption that the invest-
ment cost function c(x) is of class C1, continuous and strictly convex. If c(x) is not
so well behaved, then some properties of the price distribution change accordingly.

This proposition also shows that the lowest production cost on the market is
the efficient cost x∗. The seller with the lowest cost trades immediately with a
probability of one: any price offer in the market is weakly higher than his or her
reserve price. As the seller’s investments are unobservable to the buyer, he or she
becomes the residual claimant and invests efficiently.

Finally, there is a mass point at x∗ in both Fe(x) and F (x), as a buyer who offers
rS(x∗) can only trade with these sellers and must get strictly positive equilibrium
payoff. Moreover, there is no other mass point, as any of such point would lead
to a jump in the buyer’s payoff as a function of p. This contradicts the buyer’s
indifference condition.

The preceding results and intuitions hold even when β = 0, in which case the
buyer in each pair is a monopolist. The monopolist is indifferent to the price interval
because the stationary cost distribution is adjusted so that the demand function is
unit elastic at any price in the interval.

In the rest of this section, we solve H(p) and F (x) and then show the existence
and uniqueness of the steady state equilibrium.

H(p) can be solved from the envelope condition of U(x). It is legitimate to take
the derivative of U(x) because we have proved that the support is an interval and
that U(x) − c(x) = 0 for any x on the support. c(x) is of class C1, which implies
that U(x) is also of class C1. The envelope condition is

U ′(x) = −(1−H(rS(x))) +H(rS(x))βU ′(x)
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Using the equilibrium restriction that U ′(x) = c′(x), H(p) can be solved:

H(p) =
1 + c′(x̂(p))

1 + βc′(x̂(p))
(6)

F (x) is solved from the buyer’s indifference condition. If a buyer offers the
highest reserve price rS(x0) = x0 + βU(x0) = x0, he or she can trade with a
probability of one. Therefore, π = y0 − x0.

Any other price on the support must yield the same expected profit. In other
words,

(y0 − p)F (x̂(p)) + [1− F (x̂(p))]βπ = y0 − x0

Therefore, the stationary cost distribution F (x) can be calculated as follows:

F (x) =


0, if x ∈ (−∞, x∗),

y0−βπ−x0
y0−βπ−x−βc(x)

, if x ∈ [x∗, x0],

1, if x ∈ (x0,+∞).

(7)

We have shown that F (x) and H(p) exist and are unique. Thus, the investment
strategy Fe(x) also exists and is uniquely determined by (5).

Proposition 2. The steady state equilibrium exists and is unique.

4 Equilibrium Characterization

4.1 Investment Strategy and Stationary Cost Distribution

There are two distributions of sellers’ type. One is the investment strategy Fe(x),
which is the cost distribution of entrants. The other is the stationary cost distribution
F (x), which is the cost distribution of incumbents. We have already shown that
the per-period trading probability increases in the investment level, or equivalently
decreases in the production cost. Therefore, a more efficient seller trades and exits
the market more rapidly. In other words, the cost distribution of sellers who exit
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is more efficient than the stationary cost distribution. This in turn implies that the
investment strategy Fe(x) is always more efficient than F (x).

Proposition 3. The stationary cost distribution F (x) has first order stochastic dom-

inance over the investment strategy Fe(x).

4.2 Constant Payoffs and Social Welfare

As shown in the previous section, sellers always invest with a positive probability
given any search friction. The social welfare is expected to be higher than that
obtained in the benchmark case with observable investments, where sellers have no
incentive to invest. However, this is not the case as shown in the following theorem.

Theorem 1. For any β ∈ [0, 1), the seller’s ex ante payoff is 0, and the buyer’s ex

ante payoff equals the social welfare, which is y0 − x0.

We can easily verify that the agents’ payoffs and social welfare are the same
in both observable and unobservable cases. Although the unobservability incen-
tivizes investments, it also causes trading inefficiency. The welfare gain generated
from investments can be realized fully only if the seller and buyer entrants agree to
trade immediately after entering the market. However, this is impossible given the
presence of information and search frictions. Due to the unobservability, both the
cost and the price distributions are non-degenerate. Profitable trades are therefore
conducted only probabilistically. In other words, in expectation there is a expected
delay in trade for any buyer whose price offer is strictly lower than rS(x0). The
welfare loss due to the delay in trade exactly offsets the welfare gain from the more
efficient investments.

The social welfare remains constant over the search frictions. As the social wel-
fare depends on both the investment and trade efficiency, the constant welfare result
may arise from the constant investment and trade efficiency, from more efficient
investments and less efficient trade or vice versa. To determine which is the case,
in the next section we investigate the change in investment strategy and efficiency
of trade as we vary the search frictions.
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4.3 Comparative Statics and the Limiting Case

In this paper, the search friction is captured by the fact that it takes time t to meet
with the next potential partner. In this section, we illustrate how equilibrium out-
comes vary as search frictions change, or equivalently, as t and β changes. It is easy
to see that β strictly decreases in t.

Consider a seller with some cost x ∈ (x∗, x0). As meetings become more
frequent, the seller trades with a higher probability per unit of time if the price dis-
tribution remains constant. Consequently, the new marginal benefit of investment,
which strictly increases in the probability of trade per unit of time, is strictly larger
than the original marginal cost of investment. Therefore, to keep a seller indifferent
across investments when the search frictions decrease, the buyers must price more
aggressively. That is, the per-period trading probability 1−H(rS(x)) must strictly
decrease in β. Indeed,

∂(1−H(rS(x)))

∂β
=

(1 + c′(x))c′(x)

(1 + βc′(x))2
< 0, for any x ∈ (x∗, x0)

As the search frictions vanish, the probability of trade per-period 1−H(rS(x))

must converge to zero for any x ∈ (x∗, x0). Equivalently, buyers must price ex-
tremely aggressively in the limit, i.e., the price offer distribution must converge in
distribution to a point mass at rS(x∗). Otherwise, any seller trades almost certainly
within any small amount of time. The marginal benefit of investment therefore be-
comes one and a seller cannot be indifferent across investment levels. We can also
mathematically verify this intuition from (6) by taking the limit β → 1.

The next result is that the stationary cost distribution F (x) becomes less effi-
cient as β increases. If F (x) stays constant when meetings become more frequent,
a buyer who is originally indifferent over price offers strictly prefers to offer the
lowest price rS(x∗). Therefore, the per-period trading probability of a price lower
than rS(x0) must decrease in β. That is, the stationary cost distribution F (x) with a
larger β has first order stochastic dominance over an F (x) with a smaller β. Indeed,

∂F (x)

∂β
=

(y0 − x0)(x− x0 + c(x))

[y0 − βπ − x− βc(x)]2
< 0
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Figure 2: Stationary Seller Type Distribution
(In this example: x0 = 1.5, c(x) = 1

2
(x− x0)2, y0 = 2.2.)

In the limit, we can verify that F (x) converges in distribution to a point mass
at x0 from (7). That is, almost all of the incumbents are composed of sellers who
invested zero. This result is shown graphically in Figure 2. If F (x) is bounded
away from 0 in the limit for some x < x0, then the per-period trading probability of
a buyer offering rS(x) is strictly positive and the buyer can trade immediately as the
time between two successive meetings shrinks to zero. Hence, a buyer who offers
rS(x0) would find it optimal to lower the price offer to rS(x) without changing the
trading probability, leading to a contradiction.

In the steady state, the cost distribution of entrants is the same as that of exits to
preserve the stationary cost distribution. As the cost distribution of incumbents be-
comes less efficient as β increases, the distribution of exits and hence the investment
strategy Fe(x) may become less efficient.

It turns out that the conjecture is not quite right. We find that the point mass
Fe(x

∗) strictly increases in β, i.e., an entrant is more likely to invest efficiently.
In the limit, Fe(x∗) increases to one and hence the investment strategy becomes
efficient. We already know that Fe(x) is always more efficient than F (x). Our
limiting result further shows that the two distributions converge to two polar points,
respectively. The investment strategy with different discount factors is plotted in
Figure 3.

17



Figure 3: Seller’s Investment Strategy
(In this example: x0 = 1.5, c(x) = 1

2
(x− x0)2, y0 = 2.2.)

To understand this result, note that a seller who invests efficiently always exits
the market immediately independent of β. In addition, we have three observations
from previous analysis: as β increases, 1) a larger proportion of the incumbents
are the underinvested type; 2) the per-period trading probabilities of underinvested
sellers strictly decrease; and 3) the average cost of underinvested sellers strictly
increases, which implies that a seller with the average cost is less likely to trade. The
first effect raises the proportion of underinvested exits, as captured by the previously
mentioned casual intuition. The remaining two effects explain why the proportion
of underinvested exits decreases in β: any underinvested seller is less likely to trade
and the composition of the underinvested sellers becomes less efficient. The latter
dominates the former.

We summarize the preceding comparative statics and limiting results in the fol-
lowing theorem.

Theorem 2. As β increases to one, in the steady state equilibrium

1. H(rS(x)) strictly increases for any x ∈ (x∗, x0) and converges in distribution

to a point mass at rS(x∗);

2. F (x) strictly decreases for any x ∈ [x∗, x0) and converges in distribution to

a point mass at x0; and
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3. Fe(x∗) strictly increases and Fe(x) converges in distribution to a point mass

at x∗.

From this theorem, we can better understand the mechanism behind the constant
social welfare result. As β increases, more of the new entrants invest efficiently, and
this may generate additional social welfare if the trading efficiency remains constan-
t. Unfortunately, trades become less efficient at the same time. As β increases, the
stationary cost distribution is more concentrated on higher costs. Consequently, it
takes more periods for a buyer offering a given price to trade.

4.4 Convergence from the initial time to the steady state

So far we have focused on the steady state equilibrium. In this section, we inves-
tigate the existence of a path starting from date zero and converging to the steady
state, such that the equilibrium properties in the steady state are preserved along the
path.

To construct such a path, we assume that agents in any cohort (correctly) expect
to receive the same search stage payoffs as in the steady state equilibrium. In period
t = 1, we let the seller entrants to invest according to F (x) and the buyers to price
according toH(p). Seller entrants obey the order because they are indifferent to any
investment level on the support given their expected search stage payoffs. Buyers
also obey, as the cost distribution of incumbents at t = 1 is F (x). At the end of
date t = 1, only some of the agents (denoted by e1 < 1) trade and exit, and the cost
distribution of exiting sellers is exactly Fe(x).

At the beginning of date t = 2, the new cohort of sellers are again indifferent
to the investment levels. Let measure e1 of them invest according to Fe(x) and
measure 1 − e1 of them invest according to F (x). This way, the incumbents’ cost
distribution at t = 2 remains F (x). The price distribution of buyers is therefore the
same. Furthermore, the size of exits at t = 2, e2, remains smaller than one.

In general, at any date along the path, the size of the exits is always smaller than
the size of the entrants. Therefore, the investment distribution of entrants in any
cohort can be constructed as previously specified to preserve F (x). The size of the
market will eventually grow to the size in steady state and the size of the exits will
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be equal to that of the entrants. In the end the equilibrium converges to the steady
state.

As the preceding construction shows, the agents’ ex ante payoffs, social welfare,
incumbents’ cost distribution and price distribution are constant along the path.

Proposition 4. There exists an equilibrium path starting from the initial time and

converging to the steady state such that

1. at any point along the path, the incumbents’ cost distribution is F (x) as spec-

ified in (7) and the price distribution is H(p) as specified in (6);

2. within any cohort, the seller’s ex ante payoff is zero, the buyer’s ex-ante payoff

is y0 − x0 and the social welfare is y0 − x0; and

3. the investment strategy becomes more efficient as time increases.

The rest of the paper extends the baseline model along two directions, respec-
tively. Section 5 considers the situation in which a buyer may invest to raise the
valuation. Section 6 examines a two-sided offering case in which a seller makes a
take-it-or-leave-it offer with a positive probability.

5 Two-Sided Investments

In many cases, buyers can also invest before searching for sellers. For instance, a
firm can invest in technology to raise the output per unit of labor. The main message
from studying this extension is that the buyers in this environment underinvest even
if they have all of the bargaining power.

We assume that before entering, a buyer can increase the value from y0 to y
with investments e(y), where e(y0) = e′(y0) = 0 and e(y) is strictly increasing and
strictly convex for any y > y0. The surplus from trade between x and y is y − x.
This assumption implies no complementarity between investments, which greatly
simplifies the analysis5. Finally, the observability of the buyer’s investments may

5In the case with one-sided investment, we can make this assumption without a loss of gener-
ality, as all of the buyers are identical. In the two-sided investment case, however, this assumption
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be arbitrary, as there is no complementarity by assumption and buyers have all of
the bargaining power.

Consider the benchmark cases of a) the first best and b) observable investments.
In the first best benchmark case, as there is no complementarity, the social planner
commends all agents to trade upon their first meetings. Given this, the planner asks
all sellers to reduce the production cost to x∗ and all buyers to raise the value to y∗,
where x∗ is defined as before and y∗ is uniquely determined by e′(y∗) = 1.

In the benchmark case with observable investments, all sellers invest zero and
all buyers raise the valuation to y∗ and offer a price x0. In equilibrium, a seller
receives a payoff of zero and a buyer receives a payoff of y∗ − x0 − e(y∗), which is
also the social welfare.

In the rest of this section, we derive the optimality conditions of the steady state
equilibrium and then characterize the equilibrium.

5.1 The Steady State Equilibrium

Due to the lack of complementarity, sellers cannot benefit from the buyers’ invest-
ments directly and care only about the price distribution. Therefore, the seller’s
problem is exactly the same as before and the previous equilibrium conditions for
sellers continue to hold.

We therefore focus on the buyer’s problem in the rest of this section. A buyer’s
strategy consists of his or her investment strategy Ge(y) and the price offer p(y).
p(y) maximizes the search stage payoff denoted as Π(y),

Π(y) = max
p
{(y − p)F (x̂(p)) + [1− F (x̂(p))]βΠ(y)} (8)

Moreover, the following indifference conditions must hold.

Π(y)− e(y) = π ≥ 0, for any y on the support of Ge(y) (9)

Π(y)− e(y) ≤ π, for any y not on the support of Ge(y)

excludes some interesting scenarios. For instance, the surplus from trade could be supermodular,
in which case a higher seller’s investment level leads to a larger marginal benefit of the buyer’s
investment. We will leave the analysis for more general cases as future work.
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They essentially require a buyer to be indifferent across any y on the support of
the investment strategy Ge(y) and weakly prefer those y to any other y that is not
on the support. The difference between the search stage payoff and the investment
cost π is the buyer’s ex ante payoff.

Lemma 2. In any steady state equilibrium with two-sided investments, p(y) is

single-valued and increases in y for any y on the support of Ge(y).

Lemma 2 shows that the price offer increases in buyer’s type. The waiting
cost of a buyer with a higher valuation is larger. The buyer is willing to offer a
higher price to ensure a higher trading probability. Consequently, the buyer with
the highest valuation on the support, denoted as ȳ, offers the highest price, which
equals the reserve price of a type x0 seller, i.e., p(ȳ) = x0 and F (x̂(p(ȳ))) = 1.
Therefore, Π(ȳ) = ȳ − x0 and π = Π(ȳ)− e(ȳ) = ȳ − x0 − e(ȳ) > 0.

Lemma 2 also demonstrates that given his or her ex ante investments, a buyer
will never play a mixed pricing strategy at the search stage. Suppose that there are
two buyers investing the same e(y) but offering different prices. In particular, buyer
1 offers price p1 and buyer 2 offers price p2 < p1. Given the non-degenerate produc-
tion cost distribution, buyer 1 trades faster in expectation and therefore has a larger
marginal benefit of investment. However, as they choose the same investment level,
the marginal cost of investment is the same for both, leading to a contradiction.

More importantly, the pure pricing strategy implies that although the buyers
have all of the bargaining power, they adopt a mixed investment strategy and hence
underinvest with a strictly positive probability.

Proposition 5. In any steady state equilibrium with two-sided investments, the sell-

er’s investment strategy Fe(x), stationary cost distribution F (x), buyer’s investment

strategy Ge(y) and stationary valuation distribution G(y) have the following prop-

erties:

1. Fe(x) and F (x) have support [x∗, x0] with the unique point mass at x∗; and

2. Ge(y) and G(y) have support [y, y∗] and are atomless, where y is uniquely

determined by

y∗ − x0 − e(y∗) = [y − x∗ − βc(x∗)]e′(y)− e(y) (10)
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Finally, the steady state condition must hold for buyers. That is, the investment
strategy Ge(y) must equal the valuation distribution of the buyers who exit the mar-
ket. A buyer exits when his or her offer is accepted, which happens with a proba-
bility of F (x̂(p(y))). Combined with G(y), the distribution of exits is determined.
Equating the entrant and exit distributions, we have the following equilibrium con-
dition.

Ge(y) =

∫ y
y
F (x̂(p(ỹ)))dG(ỹ)∫ y∗

y
F (x̂(p(ỹ)))dG(ỹ)

(11)

We are now ready to solve the equilibrium. The convex supports and the in-
difference conditions imply that both U(x) and Π(y) are differentiable. We can
therefore use the envelope conditions to solve for the stationary distributions and
the price offer function p(y). The derivation also proves the existence and unique-
ness of the steady state equilibrium. We summarize the results in the following
lemma.

Lemma 3. The steady state equilibrium with two-sided investments exists. The

stationary cost distribution CDF F (x) is defined by (13), the sellers’ investment

strategy CDF Fe(x) is defined by (5), the reserve price rS(x) is defined by (2), the

stationary valuation distribution CDF G(y) is defined by (14), the buyers’ invest-

ment strategy CDF is defined by (11) and the price offer p(y) is defined by (12).

Moreover, the steady state equilibrium is unique.

p(y) = y − e(y) + y∗ − x0 − e(y∗)
e′(y)

(12)

F (x) =


0, if x ∈ (−∞, x∗),
(1−β)e′(ŷ(rS(x)))
1−βe′(ŷ(rS(x)))

, if x ∈ [x∗, x0], where ŷ(p) is the inverse of p(y)

1, if x ∈ (x0,+∞).
(13)

G(y) =


0, if y ∈ (−∞, y)
1+c′(x̂(p(y)))

1+βc′(x̂(p(y)))
, if y ∈ [y, y∗],

1, if y ∈ (y∗,+∞).

(14)

23



In the baseline model, we have demonstrated that the equilibrium payoffs and
social welfare are the same as if investments were observable. This result still holds
in the two-sided investments extension.

Theorem 3. In the steady state equilibrium with two-sided investments, the seller’s

ex ante payoff equals zero, the buyer’s ex ante payoff and the social welfare equals

y∗ − x0 − e(y∗).

5.2 Comparative Statics and the Limiting Case

The comparative statics and limiting results for H(p), F (x) and Fe(x) in theorem
2 can be extended here. Therefore, we do not repeat the results but instead devote
this section to the comparative statics exercise with the buyers’ investment strategy
Ge(y) and stationary valuation distribution G(y).

First, the lower bound y as defined in condition (10) strictly increases in β. To
understand this result, we know that y offers the lowest reserve price x∗ + βc(x∗),
which strictly increases in β. Meanwhile, the trading probability is strictly lower,
as F (x∗) strictly decreases in β. Therefore, y must strictly increase in β to keep the
buyer’s ex ante payoff constant (π = y∗ − x0 − e(y∗)).

Furthermore, the limit of y as β → 1 is strictly less than y∗. In other words, the
investment strategy is non-degenerate even when the search frictions vanish.

The stationary valuation distribution G(y) also adjusts as β changes. We know
from the baseline model that the price distribution concentrates more on lower
prices as β increases. Given that p(y) strictly increases in y, it must be the case
that G(y) concentrates more on smaller valuations. G(y) indeed converges in dis-
tribution to a point mass at y in the limit. Figure 4 graphically shows the preceding
two results.

The buyers’ investment strategy Ge(y) also converges in distribution to a point
mass at y as β approaches one. We know that almost all of the buyers offer the
lowest price in the limit. Therefore, almost all of the trades take place at the lowest
price offered by y. Hence, the entrants who replace these exits in the steady state
consist almost entirely of type y buyers. The investment strategy with the same set
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Figure 4: Stationary Buyer Type Distribution
(In this example: x0 = 1.5, c(x) = 1

2
(x− x0)2, y0 = 2.2, e(y) = 1

2
(y − y0)2.)

of parameters is plotted in Figure 5. 6

The preceding discussions are summarized in proposition (6).

Proposition 6. In the steady state equilibrium with two-sided investments,

1. as β increases to one, (i) the lowest valuation y strictly increases and (ii) a

buyer with a valuation that equals the t ∗ 100th percentile of G(y) offers the

reserve price of a more efficient seller, for any t ∈ (0, 1); and

2. as β → 1, (i) y is still bounded away from y∗, i.e., limβ→1 y < y∗, and (ii)

Ge(y) and G(y) converge in distribution to a point mass at y.

6 Two-Sided Offers

In some situations, a seller also has the opportunity to make offers. In each meet-
ing, assume nature randomly selects the seller to make a take-it-or-leave-it offer
with a probability α that is bounded away from zero and selects the buyer with the

6To clarify, although the investment strategy concentrates more on lower valuations, we cannot
conclude that the investment strategy becomes less efficient because y strictly increases in β.
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Figure 5: Buyer’s Investment Strategy
(In this example: x0 = 1.5, c(x) = 1

2
(x− x0)2, y0 = 2.2, e(y) = 1

2
(y − y0)2.)

complementary probability. Therefore, a seller’s strategy also includes a price offer
pS(x), and a buyer’s strategy also includes a reserve price rR.

We can verify that rR = y0 − βπ, i.e., a buyer is willing to pay the price if it
leaves at least the discounted continuation payoff. Therefore, all sellers will propose
pS(x) = rR if rR − x is weakly higher than βU(x).

6.1 Benchmark Case: Observable Investments

As a benchmark, let us first characterize the steady state equilibrium when invest-
ments are observable. It will become clear shortly that we can borrow a lot of the
results in this benchmark for the analysis of the unobservable case.

First, as long as a positive amount is invested, a seller will choose x̄ to maximize
his or her ex ante payoff:

x̄ = argmaxx{
α(y0 − x− βπ)

1− β(1− α)
− c(x)}

Therefore, x̄ is uniquely defined by

c′(x̄) =
−α

1− β(1− α)
(15)
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Lemma 4. In any stationary equilibrium with two-sided offers and observable in-

vestments, either all of the incumbents have cost x̄ and trade immediately, or some

of the incumbents have cost x0 and never trade. In both cases, all of the seller

entrants invest to have cost x̄.

Therefore, depending on the parameters, one of the following two equilibria will
arise. In the first type of equilibrium, the entrants in any period invest to become
type x̄ and are the sole source of incumbents. In other words, the market size
equals the entrant size. All of the agents trade immediately. We know that a seller
has an alternative option, which is to invest zero and receive zero payoff. Therefore,
this equilibrium requires the search stage payoff, which depends on the bargaining
power α and the shape of c(x), to be larger than the investment cost.

When this condition fails to hold, we have the second type of equilibrium, in
which the incumbents consist of not only the new entrants, but also some sellers
who invest zero. All of the non-invested incumbents never trade and stay in the
market forever. All of the invested incumbents trade immediately and are replaced
by entrants in the next period. This equilibrium requires seller entrants to be indif-
ferent over investing zero and c(x̄). One way to understand the presence of these
non-invested incumbents is to use the convergence analysis in section 4.4. Before
reaching the steady state, entrants mix between investing and not investing, and the
non-investing sellers never leave the market.

Lemma 5. The steady state equilibrium with two-sided offers and observable in-

vestments takes one of the following two forms.

1. If α(y0 − x̄) ≥ c(x̄), then both F (x) and Fe(x) are point masses at x̄. The

seller’s ex ante payoff is α(y0 − x̄) − c(x̄) and the buyer’s ex ante payoff is

(1− α)(y0 − x̄).

2. If α(y0 − x̄) < c(x̄), then Fe(x) is a point mass at x̄ and F (x) has two point

masses at x0 and x̄, with F (x̄) = α(y0−x̄)
β(1−α)c(x̄)

− 1−β(1−α)
β(1−α)

. The seller’s ex ante

payoff is zero and the buyer’s ex ante payoff is α(y0−x̄)−(1+αβ−β)c(x̄)
αβ

.

From (15), we can see that x̄ strictly decreases in β and converges to x∗ as
β → 1 for any α bounded away from zero. Therefore, the investment strategy
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becomes efficient in the limit. Moreover, trade becomes efficient in the limit, as
the buyer’s per-period trading probability Fe(x̄) is bounded away from zero in both
equilibria. Overall, the social welfare converges to the first best in the limit.

Lemma 6. In the two-sided offers case with observable investments, for any α that

is bounded away from zero, as β converges to one, Fe(x) converges in distribution

to a point mass at x∗. In addition, the social welfare converges to the first best.

Lemma 6 shows that even if the investments are observable, when the seller-
s have strictly positive bargaining power, the investments become efficient in the
limit. To understand this result, note that a seller is the residual claimant of his or
her investments when making the offer. As the time between two meetings shrinks
to zero, a positive α implies that the seller has the chance to make the offer almost
immediately after entry. Therefore he or she becomes the full residual claimant and
invests efficiently, although he or she obtains only an α share of the total surplus
from trade. Moreover, the social welfare also converges to the first best, as both the
investments and trades are efficient.

To avoid any confusion, I should stress here that this limiting result does not
imply any discontinuity around α = 0. For this result to hold, we require α to be
bounded away from zero.

6.2 Steady State Equilibrium

Let us turn to the steady state equilibrium with unobservable investments. For any
x on the support of Fe(x), trade always takes place if the seller is selected to make
the offer, as the surplus from trade y0 − x − βπ − βU(x) must be non-negative to
ensure a positive search stage payoff U(x).

We can follow the same logic as in the baseline model to verify that the support
of Fe(x) is [x∗, x̄] with a mass point at x∗, and that buyers play a mixed pricing
strategy over [rS(x∗), rS(x̄)].

In equilibrium, a seller’s ex ante payoff v and a buyer’s ex ante payoff π must
be non-negative. Similar to the observable benchmark case, the equilibrium could
take one of the two forms, depending on whether α(y0− x̄) is larger than c(x̄). The
detailed argument is as follows. When the support of F (x) is also [x∗, x̄], using the
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indifference conditions to solve for v and π, we need only focus on a seller with a
cost x̄ and a buyer who offers rS(x̄). Combining their value functions,

U(x̄) =
α(y0 − x̄− βπ)

1 + αβ − β
= c(x̄) + v

1− αβ
1− α

π = y0 − x̄− βc(x̄)− βv

We can solve v and π as follows:

v = α(y0 − x̄)− c(x̄) (16)

π = (1− α)(y0 − x̄) (17)

As long as α(y0 − x̄)− c(x̄) ≥ 0, both v and π are positive.
When α(y0 − x̄) < c(x̄), some fraction of incumbent sellers have cost x0 and

never trade. We can verify that the fraction F (x0) and equilibrium payoffs are the
same as calculated in the observable benchmark.

To sum up, the equivalence in the equilibrium outcomes of observable and un-
observable investments still holds in this extension.

6.3 Comparative Statics and the Limiting Case

As the investment strategy has support [x∗, x̄] and the social welfare is same as in
the observable benchmark, the following proposition holds.

Proposition 7. In the unique steady-state equilibrium with two-sided offers, the

highest production cost x̄ strictly decreases in β and α. For any α that is bounded

away from zero, the investment strategy converges in distribution to a mass point

at x∗ and the equilibrium social welfare converges to the first best as β → 1 or

α→ 1.

Notice here, although in the baseline model the investment strategy also con-
verges to the first best, the mechanisms behind the results are quite different.
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7 Other Extensions and Robustness

7.1 Other Extensions

Investments are Observable with a Positive Probability. As the previous anal-
ysis reveals, the social welfare that could be generated from positive investments
is completely dissipated by delays in trade. If in the search stage investments are
observed with a positive probability q per period, then profitable trades can be con-
ducted with no delay when investments are observable. This conjecture is indeed
correct. Given any search friction, partial information yields strictly higher social
welfare than no information (and full information).

To be more precise, seller entrants continue to use a mixed investment strategy.
Its support is now [x, x0], with x > x∗ uniquely pinned down by

c′(x) =
−(1− q)
1− qβ

We have two observations regarding the support of the investment strategy.
First, the most efficient seller now underinvests. It is because when their invest-
ments become observable, they are fully extracted. Second, as x0 is still on the
support, the seller’s ex ante payoff equals zero.

However, the buyer’s payoff is strictly higher than that in the baseline model.

π = (y0 − x0)(1− q) + q

∫ x0

x

[y0 − x− βc(x)]dF (x) > y0 − x0

As a result, the social welfare is strictly higher than that in the baseline model
(and in the perfectly observable benchmark).

Buyers Costly Verify Sellers’ Type. As a related extension, we examine how equi-
librium outcomes change when a buyer can costly verify the opponent’s production
cost once they meet.

Assume that before making the offer, a buyer can pay a verification cost A > 0

to perfectly observe the seller’s production cost. To make the extension non-trivial,
assume that the cost A is not too large so that a buyer is willing to verify in some
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situations. Now the buyer’s strategy also includes the probability of verification.
Let us use a ∈ [0, 1] to denote the probability of verification.

First, the net surplus from trade y0 − x − βU(x) − βπ must be positive for
any x on the support. Therefore, after paying the verification cost, a buyer offers
the reserve price x + βU(x). This is exactly why a buyer may be willing to pay
the verification cost. Instead of paying a high price x0 (or a lower price with a
smaller trading probability), he or she can trade with a lower price. In addition, the
probability of verification, a, must be strictly less than one. Otherwise, none of the
seller entrants invests, which makes it optimal not to verify.

Following the same argument, the investment strategy and pricing strategy with-
out verification must be mixed strategies. In each period, a seller receives his or her
reserve price with a probability of a and receives a random price offer with a proba-
bility of 1− a. The type of the most efficient sellers on the support x is determined
by

c′(x) =
−(1− a)

1− aβ

For a positive a, x is higher than the socially efficient production cost x∗ and is
strictly increasing in a.

If a buyer decides not to verify, he or she must be indifferent between reserve
prices. Like before, the indifference condition pins down the stationary cost distri-
bution F (x) with support [x, x0], where x is to be determined.

If a buyer decides to verify, then his or her expected payoff is

π = y0 − (x+ βc(x))F (x)−
∫ x0

x

(x+ βc(x))dF (x)− A

Therefore, if the buyer is indifferent between verifying and not verifying, it must
be true that

x0 = (x+ βc(x))F (x) +

∫ x0

x

(x+ βc(x))dF (x) + A (18)

The right hand side of (18) strictly increases in x and is strictly larger than the
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left-hand side when x = x0. Therefore, (18) either 1) uniquely determines x or 2)
shows that the buyer strictly prefers not to verify if the equation has no solution.
In the first case, the mixed strategy parameter a can be uniquely solved from c′(x).
In the second case, the equilibrium outcomes are the same as that in the baseline
model.

Most of the equilibrium properties are preserved after allowing for costly veri-
fication. For instance, the agents’ ex ante payoffs and social welfare are the same
as before. Moreover, we can show that for any cost A, buyers choose not to verify
with a large enough discount factor and hence we return to the baseline model. We
know that the stationary cost distribution becomes less “uncertain” as the search
frictions vanish. Hence, the value of information is smaller.

Lemma 7. In the steady state equilibrium with costly verification, the seller’s ex

ante payoff is zero, the buyer’s ex ante payoff and social welfare is y0 − x0.

Moreover, given any A > 0, there exists a β̂ such that for any β > β̂, buy-

ers choose not to verify and the equilibrium outcomes are the same as that in the

baseline model.

7.2 Robustness

The intuition for mixed strategy does not rely too much on the specific setup of the
model. Moreover, as long as the agents continue to play the mixed strategy, most
of the main results continue to hold. In this section, we check the robustness of the
results of the baseline model against some alternative assumptions.

General One-to-One Matching Technology. The baseline model assumes that
each player is definitely paired with one player from the other side in each peri-
od. The main results are robust if instead we have a general one-to-one matching
technology so that the probability of not being paired in one period is positive.

To be more precise, the equilibrium investment strategy Fe(x) remains non-
degenerate with convex support [x, x0] and a buyer plays the mixed pricing strategy
over the reserve prices of these types. The difference is that x is higher than x∗

if a seller cannot be paired with a probability of one in each period. Moreover,
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because the indifference conditions continue to hold, the equilibrium payoffs and
social welfare equal the values generated with observable investments. Finally, as
β converges to one, x converges to x∗. As meetings become more frequent, it is as
if the most efficient sellers can trade immediately and hence they invest efficiently.
The convergence results of F (x) and Fe(x) can also be extended with different rates
of convergence that depend on the matching technology.

Ex ante Heterogeneous Sellers. We assume that all of the sellers are ex ante
identical in the baseline model. The intuition can be extended to settings with ex
ante heterogeneous sellers provided that their ex ante types remain unobservable
and that their ex ante type distribution satisfies some mild assumptions.

As a simple example, suppose some fraction of the seller entrants are born with
the production cost x∗ and hence there is no need for them to invest. Others have
the initial production cost x0 and investment opportunity specified in the baseline
model. We can easily verify that as long as the fraction of the efficient type is
smaller than Fe(x∗) (which is easier to be satisfied when β is large enough), all of
the conclusions in the baseline model continue to hold.

Exogenous Death Shock. Suppose each player experiences an exogenous death
shock with positive probability. For most of the analysis, this is equivalent to re-
defining a smaller discount factor that also converges to one in the limit. The only
complication is that now sellers also exit due to the death shock. Thus, we need to
rewrite the stationary distribution condition accordingly. In other words, the invest-
ment strategy is slightly changed.

If we denote the discount rate as r1 and the rate of the death shock as r2, then
the limit of Fe(x∗) is continuous and decreasing in r2, and is bounded away from
zero for any r2.

Lemma 8. As the time between two consecutive meetings shrinks to zero,

Fe(x
∗)→ [1 +

x0 − x∗ − c(x∗)
y0 − x0

r2

r1 + r2

]−1

Therefore, the limit of Fe(x∗) decreases in the rate of death shock r2 and is larger

than [1 + x0−x∗−c(x∗)
y0−x0 ]−1.
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8 Conclusion

This paper examines the investment incentive and its welfare consequences in an
infinite horizon random search and bargaining game with unobservable and selfish
investments.

We demonstrate that in a unique steady state equilibrium, both the investment
strategy and the price offer distribution are non-degenerate with convex support-
s. Unobservability generates rent for high investment and therefore incentivizes
investment even if the sellers have no bargaining power.

However, positive investments above the minimum level fail to generate any so-
cial welfare for any search friction. Trading inefficiency caused by unobservability
erodes the welfare gain that could be created.

Moreover, we show that if the buyers have all of the bargaining power, then
as meetings become more frequent the investment distributions of the incumbents
and entrants shift in the opposite direction. The incumbent investment distribution
converges to a point mass at no investment, and an entrant’s investment becomes
efficient.

Appendices

A Proofs for the Baseline Model

Appendix A.A Proof of Lemma 1

1. U(x) is Strictly Decreasing. As a type x seller can always adopt the reserve
price of a type x+ ε seller (for some ε > 0), U(x) must be strictly decreasing
in x.

2. rS(x) is Strictly Increasing. Multiply both sides of the seller’s value function
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by β and add x, we obtain the following equation after rearranging:

rS(x)− β[E(p | p ≥ rS(x))(1−H(rS(x)) + Pr(p = rS(x)))

+ rS(x)(H(rS(x))− Pr(p = rS(x)))] = (1− β)x (19)

The left-hand side strictly increases in rS(x) and the right-hand side strictly
increases in x. Therefore, rS(x) is strictly increasing in x.

3. U(x̄) = 0. Because r(x̄) is the highest price that a buyer is willing to offer,
(1) with x = x̄ becomes U(x̄) = βU(x̄). Hence, U(x̄) = 0.

4. U(x) and rS(x) are Continuous. No buyer offers a price higher than rS(x̄).
Therefore, for any type x > x̄, H(rS(x)) = 1 and U(x) = 0.

The previous step shows that U(x̄) = 0.

Because U(x) decreases in x for any x < x̄, U(x) only has downward jumps.
Suppose U(x) jumps down at some point x̂. Given that rS(x) = x+ βU(x),
rS(x) jumps downward at the same point x̂. However, this contradicts rS(x)

being strictly increasing.

Therefore, both U(x) and rS(x) are continuous.

Appendix A.B Proof of Proposition 1

1. Supports of F (x), Fe(x) and H(p).

The supports are closed given the assumption that the sellers and buyers trade
when indifferent.

Next, we show that the supports are convex. First, if a price offer p is on
the support of H(p), then x̂(p) must be on the support of F (x) and Fe(x).
Otherwise, the buyer who offers price p is not optimizing because he or she
can lower the price to rS(x′) without affecting the probability of trade, where
x′ is the highest production cost among all of the costs on the support and
lower than x̂(p).
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Now suppose that there exist p1, p2 on the support of H(p), such that any
p ∈ (p1, p2) is not on the support. As p1 and p2 are on the support, there exist
worker types x1 and x2 on the support such that rS(xi) = pi, i = 1, 2. For
any x ∈ (x2, x1), U ′(x) is a constant because

U ′(x) =
−1 +H(p2)

1− βH(p2)

On the other hand, c′(x) strictly increases in x. Together with the continuity
of U(x), it is impossible to satisfy the indifference condition U(x1)−c(x1) =

U(x2) − c(x2) ≥ U(x) − c(x), for any x ∈ (x2, x1). Therefore, the support
of H(p) is convex. By the continuity of rS(x), the support of F (x) and Fe(x)

is also convex.

The lower bound of the price offers in equilibrium is never lower than the
reserve price of the most efficient seller, i.e.,H(rS(x))−Pr(p̃ = rX(x)) = 0.
Plugging it into the envelope condition, U ′(x) = c′(x) = −1. This implies
that x = x∗.

Hence, the support of F (x) and Fe(x) is [x∗, x0] and the support of H(p) is
[rS(x∗), rS(x0)].

2. H(p) has no point mass.

U(x) is differentiable for any x on the support, because 1) the support is
convex, 2) U(x) − c(x) = 0 and 3) c(x) is differentiable. This implies that
rS(x) and x̂(p) are differentiable for any x and p on the support. Hence, we
can solve H(p) from the equilibrium condition U ′(x) = c′(x) as follows:

H(rS(x)) =
1 + c′(x)

1 + βc′(x)
⇒ H(p) =

1 + c′(x̂(p))

1 + βc′(x̂(p))
(20)

It is straightforward to verify that H(p) has no atom.

3. F (x) and Fe(x) have a unique point mass at x∗.

We know that rS(x∗), which is only accepted by sellers with a cost of x∗, is
on the support of H(p). For a buyer who offers this price, he or she would
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get zero payoff if F (x∗) = 0. If this is the case, then the buyer would find it
profitable to deviate to rS(x0) = x0 which yields a positive payoff. Therefore,
there must be a point mass at x∗.

Next we show that x∗ is the unique point mass. Suppose these is another point
mass at x ∈ (x∗, x0]. Then there exist an ε, such that buyers would rather not
offer price p ∈ (rS(x − ε), rS(x)). By raising the price by a small amount,
buyers can enjoy a discontinuous upward jump of the trading probability.
This contradicts the convexity property of the support.

Appendix A.C Proof of Proposition 3

F (x) has first order stochastic dominance over Fe(x) requires that Fe(x)−F (x) ≥ 0

for all x and that the inequality is strict for some x.

Fe(x)− F (x) =
F (x)−

∫ x
x∗
H(rS(x̃))dF (x̃)

1−
∫ x0
x∗
H(rS(x̃))dF (x̃)

− F (x)

= F (x)

∫ x0
x∗
H(rS(x̃))dF (x̃)−

∫ x
x∗
H(rS(x̃))dF (x̃)

F (x)

1−
∫ x0
x∗
H(rS(x̃))dF (x̃)

Therefore, Fe(x) − F (x) ≥ 0 for any x ∈ [x∗, x0] and the inequality is strict
except for x = x0.

Appendix A.D Proof of Theorem 2

1. We have shown the first two parts of the theorem.

2. By (5), the proportion of seller entrants who choose to invest efficiently is

Fe(x
∗) =

F (x∗)

1−
∫ x0
x∗
H(rS(x))f(x)dx

= [1 +
1− F (x∗)

F (x∗)

∫ x0

x∗
(1−H(rS(x)))

f(x)

1− F (x∗)
dx]−1

= [1 + A]−1
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where A = 1−F (x∗)
F (x∗)

∫ x0
x∗

(1−H(rS(x))) f(x)
1−F (x∗)

dx.

By Median Value Theorem, there exist a x̃ ∈ (x∗, x0) such that

A =
1− F (x∗)

F (x∗)
[1−H(rS(x̃))]

=
−c′(x̃)(x0 − x∗ − βc(x∗))

(y0 − x0)(1 + βc′(x̃))

Take derivative with respect to β

∂A

∂β
=
−c′′(x̃) ∂x̃

∂β
(x0 − x∗ − βc(x∗)) + c′(x̃)[c(x∗) + c′(x̃)(x0 − x∗)]

(y0 − x0)(1 + βc′(x̃))2

Therefore, the sufficient conditions for the derivative to be negative are

∂x̃

∂β
> 0 and c(x∗) + c′(x̃)(x0 − x∗) > 0

We first show that the first condition is satisfied. x̃ is implicitly defined by∫ x0

x∗

1−H(rS(x))

1− β
d

F (x)

1− F (x∗)
=
−c′(x̃)

1 + βc′(x̃)
(21)

As the preceding analysis shows, 1−H(rS(x))
1−β strictly decreases in β for any

x ∈ (x∗, x0). In addition, the mass of the conditional distribution F (x | x >
x∗) shifts to higher x’s, where 1−H(rS(x))

1−β is smaller. As a result, the left-hand
side of (21) strictly decreases in β. At the same time,

∂ −c′(x̃)
1+βc′(x̃)

∂β
=
−c′′(x̃) ∂x̃

∂β
+ [c′(x̃)]2

(1 + βc′(x̃))2

Since the derivative has to be negative so that (21) holds, ∂x̃
∂β

must be strictly
positive.

This in turn implies that we only need to verify the second sufficient condition
when β = 0, as c′(x̃) is the smallest when β = 0. It is straight forward to
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check that the density of the stationary distribution strictly increases in x, as

f(x) =
(y0 − x0 − βπ)(1 + βc′(x))

[y0 − βπ − x− βc(x)]2

When β = 0, 1−H(rS(x)) = −c′(x). Therefore, equation (21) becomes,

− c′(x̃) =

∫ x0

x∗
−c′(x)

f(x)

1− F (x∗)
dx

where the right-hand-side <

∫ x0

x∗
−c′(x)

1

x0 − x∗
dx =

c(x∗)

x0 − x∗

⇒ c(x∗) + c′(x̃)(x0 − x∗) > 0

We have proved that both of the sufficient conditions hold and thus

∂Fe(x
∗)

∂β
> 0

Next, we prove that Fe(x∗)→ 1 in the limit. x̃ is defined by∫ x0

x∗
(1−H(rS(x)))

f(x)

1− F (x∗)
dx = [1−H(rS(x̃))] (22)

For any ε ∈ (0, x0 − x∗), we can rewrite the left-hand side of (22) as∫ x0−ε

x∗
(1−H(rS(x)))

f(x)

1− F (x∗)
dx+

∫ x0

x0−ε
(1−H(rS(x)))

f(x)

1− F (x∗)
dx

=[1−H(rS(x1))]
F (x0 − ε)− F (x∗)

1− F (x∗)
+ [1−H(rS(x2))]

1− F (x0 − ε)
1− F (x∗)

(23)

where x1 ∈ (x∗, x0 − ε) and x2 ∈ (x0 − ε, x0).

Here F (x0 − ε)− F (x∗) can be rewritten as,

(1− β)(y0 − x0)
−x∗ − βc(x∗) + (x0 − ε) + βc(x0 − ε)

(y0 − βπ − x0 + ε− βc(x0 − ε))(y0 − βπ − x∗ − βc(x∗))
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We can verify that for any ε and φ, there exists an η > 0, such that when
1− β < η, F (x0− ε)− F (x∗) < φ. Given that 1−H(rS(x)) is bounded for
any x, x̃ converges to x2 in the limit. Because x2 is in the interval (x0−ε, x0),
for small enough ε, x̃ converges to x0.

Therefore,A converges to zero in the limit. This in turn implies that Fe(x∗) =

[1 + A]−1 converges to one.

Appendix A.E Proof of Proposition 4

In the first period, the measure of exits is e1, which is also the proportion of in-
cumbents who exit the market in the following periods. Denote the measure of
incumbents at the beginning of period t by ut. Then for any t ≥ 1

ut+1 = 1 + ut(1− et)

Multiply both sides by e1 and rearrange, the above equation becomes

et+1 = et + e1(1− et)

First, we can verify that et < 1 for any t. When t = 1, e1 is strictly less than
1 by construction. For any t > 1, the above condition shows that et is a convex
combination of 1 and e1 and hence is also strictly less than 1.

This equation also implies that {et} is an increasing sequence, as et+1 − et =

e1(1− et) > 0.
An increasing and bounded sequence must have a limit. Denote the limit as e∞,

which can be solved from

e∞ = e∞ + e1(1− e∞)⇒ e∞ = 1.

The rest of the proposition is already proved in the main body of this paper.
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B Proofs for the Two-Sided Investment Case

Appendix B.A Proof of Lemma 2

1. p(y) is increasing.

If the support of G(y) is degenerate, then we have nothing to prove.

Otherwise, consider any y1 and y2 on the support with y1 > y2. Denote pi as
p(yi) for i = 1, 2. Because p1 (p2) solves the maximization problem of a type
y1 (y2) buyer, the following two inequalities must hold

(y1 − p1)F (x̂(p1)) + [1− F (x̂(p1))]βΠ(y1) ≥ (y1 − p2)F (x̂(p2)) + [1− F (x̂(p2))]βΠ(y1)

(y2 − p2)F (x̂(p2)) + [1− F (x̂(p2))]βΠ(y2) ≥ (y2 − p1)F (x̂(p1)) + [1− F (x̂(p1))]βΠ(y2)

Adding the two equations we have the following inequality

(y1 − y2)[F (x̂(p1))− F (x̂(p2))] ≥ [F (x̂(p1))− F (x̂(p2))][βΠ(y1)− βΠ(y2)]

In equilibrium, Π(y1) − Π(y2) = e(y1) − e(y2), which implies that y1 −
y2 > β[Π(y1) − Π(y2)]. Given this, the above inequality then shows that
F (x̂(p1)) ≥ F (x̂(p2)). This proves that p(y) increases in y.

2. P (y) is single-valued.

We can prove that the support of F (x) is [x∗, x0] using the previous approach.
Therefore, F (x) is a strictly increasing function of x for any x ∈ [x∗, x0].

Consider any y on the support ofGe(y) and denote the corresponding optimal
price as p. The search stage payoff is

Π(y) = max
p

[y − p]F (x̂(p))

1− β [1− F (x̂(p))]

which is strictly convex in p. Therefore, P (y) is single-valued.
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Appendix B.B Proof of Proposition 5

1. We can apply the same proof in the baseline model to show that the support
of Fe(x) and F (x) is [x∗, x0] and that x∗ is the unique point mass.

2. The compactness of the support of Ge(y) and G(y) results from the fact that
y∗ is finite and that all of the agents choose to trade when feeling indifferent.

To see the convexity property, suppose that y1, y2 are on the support and any
y ∈ (y1, y2) is not. Then it must be the case that p(y1) < p(y2). Otherwise
Π′(y) is constant in the interval and the indifference condition cannot be sat-
isfied. Combined with the monotonicity of p(y), the fact that y ∈ (y1, y2) are
on the support implies that p ∈ (p(y1), p(y2)) are not on the support of H(p).
This leads to a contradiction.

Because the support of G(y) is convex, we can use the envelope and indiffer-
ence condition to determine ȳ and y.

e′(ȳ) = Π′(ȳ) = 1 and e′(y) = Π′(y) =
F (x∗)

1− β(1− F (x∗))

As a result, ȳ = y∗ and π = y∗ − x0 − e(y∗). Plug π into the condition for y,
it becomes

y∗ − x0 − e(y∗) = (y − x∗ − βc(x∗))e′(y)− e(y)

y is uniquely determined by the above equation and y < y∗. To see this,
notice that the right-hand side of the above equation strictly increases in y. It
equals zero when y = y0 and it is strictly larger than the left-hand side when
y = y∗. Therefore, two sides of the equation can cross each other only once
and the intersection point is strictly smaller than y∗.

Finally, no point mass on the support of H(p) implies that the same property
holds for G(y).
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Appendix B.C Proof of Lemma 3

Combining the envelope condition for Π(y) and the indifference condition that
Π′(y) = e′(y) for any y, we have

F (x̂(p(y))) =
(1− β)e′(y)

1− βe′(y)
for any y on the support

We can use the indifference condition Π(y)−e(y) = π to solve p(y) as follows:

Π(y)− e(y) = (y − p(y))e′(y)− e(y) = y∗ − x0 − e(y∗)

⇒ p(y) = y − e(y) + y∗ − x0 − e(y∗)
e′(y)

p(y) is continuous and strictly increasing in y. Therefore, the inverse function
y(p) is well defined. We can then plug it in to solve F (x) and G(y).

From the preceding discussion, we can see that F (x), Fe(x), G(y) and Ge(y)

as defined are the only distributions that satisfy all equilibrium conditions. Hence,
the steady state equilibrium is unique.

Appendix B.D Proof of Proposition 6

1. By (10), the implicit function theorem tells us that

[y − x∗ − βc(x∗)]e′′(y)
∂y

∂β
= c(x∗)e′(y)

Therefore, ∂y
∂β

is strictly positive.

Denote the t ∗ 100th percentile of G(y) with β as yt,β , i.e.,

G(yt,β) =
1 + c′(x̂(p(yt,β)))

1 + βc′(x̂(p(yt,β)))
= t

Rearrange the above equation

1− t = −(1− tβ)c′(x̂(p(yt,β)))
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Therefore, when β increases, x̂(p(yt,β)) strictly decreases.

2. limβ→1 y < y∗ can be shown by plugging β = 1 and y = y∗ into equation
(10), and check that the left-hand side is strictly smaller the right-hand side.

For any y > y, x̂(p(y)) > x∗. Therefore, the denominator of G(y), 1 +

c′(x̂(p(y))), is strictly positive. Then it is straightforward to verify that as
β → 1, G(y)→ 1 for any y > y.

For any y > y, there exist y̌ and ˇ̌y, such that

Ge(y) =

∫ y
y
F (x̂(p(ỹ)))dG(ỹ)∫ y∗

y
F (x̂(p(ỹ)))dG(ỹ)

=
F (x̂(p(y̌)))G(y)

F (x̂(p(ˇ̌y)))

=
e′(y̌)(1− βe′(ˇ̌y))

e′(ˇ̌y)(1− βe′(y̌))
G(y)

When β → 1, both y̌ and ˇ̌y approaches y, following the same argument in the
proof for proposition 2, and G(y) approaches one for any y > y. Therefore,
Ge(y)→ 1 for any y > y.

C Proofs for the Two-Sided Offer Case

Appendix C.A Proof of Lemma 4

Suppose there are more than one optimal investment levels in a stationary equi-
librium. Given condition (15), there can be at most one x with non-negative net
surplus.

This means that if there exists another production cost of x̂ on the support, the
associated surplus from trade must be negative. As a result, a seller of cost x̂ can
never trade and his or her ex ante payoff is v = −c(x̂). So the only possibility is
that x̂ = x0.

The sellers with the production cost x0 never leave the market. Therefore, the
entrant’s type can only be the invested one in a stationary equilibrium.
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Appendix C.B Proof of Lemma 5

Equilibrium 1.
Assume α(y0 − x̄) ≥ c(x̄).
All seller entrants invest to decrease their production costs to x̄. Agents’ ex ante

payoffs can be solved as v = α(y0 − x̄) − c(x̄) and π = (1 − α)(y0 − x̄). By the
assumption, v is positive and all seller entrants invest positive amount.
Equilibrium 2.

Assume α(y0 − x̄) ≤ c(x̄).
If a seller entrant invests, he or she chooses to decrease the production cost to x̄.

Given π, his or her ex ante payoff v = α
1+αβ−β (y0 − x̄− βπ)− c(x̄). To make sure

that sellers are indifferent between x̄ and x0, v must equal zero. As a consequence,

π =
α(y0 − x̄)− (1 + αβ − β)c(x̄)

αβ

Denote F (x̄) as q, we can also solve π from the buyer’s value function as fol-
lows:

π = αβπ + (1− α)[q(y0 − x̄− βc(x̄)) + (1− q)βπ]

Equating two π’s, q can be solved as:

q =
(1− β)π

(1− α)(y0 − x̄− βc(x̄)− βπ)

As q is a probability, it lies between zero and one. q is always positive by the
above equation. The requirement that q is less than one is equivalent to α(y0− x̄) ≤
c(x̄).

The last equilibrium condition we need to verify is y0 − x0 − βπ ≤ 0. After
plugging in the expression of π, this condition becomes c(x̄) ≤ α

1+αβ−β (x0 − x̄).
This inequality holds since c′(x̄) = −α

1+αβ−β and c(x) is strictly convex.
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Appendix C.C Proof of Lemma 6

As β → 1, because α is bounded above zero, the right-hand side of (15) converges
to −1, which implies x̄ → x∗. Because Fe(x) is a point mass at x̄ in both types of
equilibrium, it converges to a point mass at x∗.

In equilibrium 1, the social welfare equals y0 − x̄ − c(x̄). Hence, it converges
to the first best. In equilibrium 2, the social welfare equals π, which also converges
to y0 − x∗ − c(x∗), given that α is bounded above zero.

D Proofs for Robustness and Other Extensions

Appendix D.A Proof of Lemma 7

x0 is on the support. Hence, the first part of the proposition holds.
As β → 1, F (x) → 0 for any x < x0. Therefore, the right-hand side of (18)

converges to x0 +A, which is strictly larger than the left-hand side. This means that
a buyer does not pay to verify if β is close enough to 1.

Moreover, the right-hand side shifts up with a larger β. It follows from 1) F (x)

increases in β, which is equivalent to putting higher weights on larger reserve prices
and 2) the reserve price x+ βc(x) increases in β for any x.

Given the above two facts, there exists a β̂ for anyA, such that the buyers choose
not to verify when β > β̂.

Appendix D.B Proof of Lemma 8

Denote the probability of surviving a death shock as δ = e−r2t, where t is the length
of the time between two periods. Then

Fe(x
∗) =

F (x∗)

1− δ
∫ x0
x∗
H(rS(x))f(x)dx

=[1 +
1− F (x∗)

F (x∗)

∫ x0

x∗
[1− δH(rS(x))]

f(x)

1− F (x∗)
dx]−1

=[1 +B]−1
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Plug in F (x∗) and H(rS(x)), and use the Median Value Theorem, there exists a
x̃ ∈ (x∗, x0) such that

B =
x0 − x∗ − β̂c(x∗)
(1− β̂)(y0 − x0)

1− δ + (β̂ − δ)c′(x̃)

1 + β̂c′(x̃)

Here β̂ = βδ. Take t→ 0,

lim
t→0

B =
x0 − x∗ − c(x∗)

(y0 − x0)
lim
t→0

[
1

1 + e−(r2+r1)tc′(x̃t)
+

1 + c′(x̃t)

1 + e−(r2+r1)tc′(x̃t)

e−r1t − 1

1− e−(r2+r1)t

]
By the same argument in the proof for Theorem 2, the limit of x̃t is x0. Using

the L’Hopital’s rule

lim
t→0

B =
x0 − x∗ − c(x∗)

y0 − x0

r2

r1 + r2
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