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Pricing CBOE VIX Futures with the Heston-Nandi GARCH Model

Abstract

In this article, we propose a closed-form pricing formula for the Chicago Board of Option Exchange

Volatility Index (VIX) futures based on the classic discrete-time Heston-Nandi GARCH model. The

parameters are estimated through different data sets including S&P 500 returns, VIX, VIX futures,

and their combination. We find that the parameters estimated by jointly using VIX and VIX futures

can efficiently capture the information for both implied VIX and VIX futures prices.

Keywords: Implied VIX, VIX futures, Heston-Nandi GARCH, Risk-neutral measure

JEL classification: C19;C22;C80

1 Introduction

The idea of using derivatives of market volatility to manage financial risk can be traced back to far

before the Chicago Board of Option Exchange (CBOE) developed its Volatility Index (VIX). Brenner

and Galai (1989) introduced a volatility index (Sigma index) and discussed derivatives such as options

and futures on this index. Following this idea, Fleming et al. (1995) introduced the old version of the

VIX, which depends on the inversion of the Black-Scholes formula. However, standardized derivative

contracts on VIX were not available until the CBOE calculated VIX on a model-free basis in 2003. Since

the introduction of VIX futures/options in 2004, volatility derivatives have become a set of popular

derivatives in the market especially after the subprime crisis.

To answer the demand for pricing the volatility derivatives in this fast-growing market, several models

were proposed, such as the binomial process for volatility option pricing (Brenner and Galai (1997)),

the square root mean-reverting process for volatility futures and options (Grunbichler and Longstaff

(1996)), the Heston1 model-based process for volatility futures (Zhang and Zhu (2006)), etc. Zhu and

Zhang (2007) also proposed a non-arbitrage model for VIX futures based on VIX term structures. In

consideration of possible jumps in log-returns, Duffie et al. (2000) proposed an affine jump-diffusion

process for log-returns that soon became a new benchmark process in the asset pricing literature. On

the basis of this process and its modifications, Lin (2007) proposed a stochastic volatility model with

simultaneous jumps in both returns and volatility to price VIX futures and yielded an approximation

1Proposed by Heston (1993) for option pricing.
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formula. Sepp (2008) added jumps into the square root mean-reverting process to price VIX options.

Zhang et al. (2010) included additional stochastic long-run variance into the jump square root mean-

reverting process and linked VIX and VIX futures quotes. By adding jumps to the Heston model, Zhu

and Lian (2012) found an analytical pricing formula for VIX futures.

Despite the development of literature on the stochastic process for volatility derivatives, little at-

tention has been paid to discrete-time models. The literature mainly focuses on equity option pricing,

such as Duan (1995), Duan (1999), Heston and Nandi (2000), Duan et al. (2005), Christoffersen et al.

(2008), Christoffersen et al. (2014), etc.2 To our best knowledge, little (if any) literature exists on the

pricing of VIX derivatives under the GARCH framework. One possible reason is that the conventional

local risk-neutral valuation relationship (LRNVR) only responds to equity risk premium, and there

is no room for an independent variance risk premium within a single shock in the GARCH models.

To overcome this problem, the recent literature estimates parameters with information from both the

underlings and the risk-neutral measures such as option prices and the VIX. For example, Hao and

Zhang (2013) suggested that joint estimates can greatly improve the GARCH model’s ability of fitting

the VIX. Kanniainen et al. (2014) show that joint estimation with VIX data can greatly improve the

GARCH model’s option pricing ability. These results indicate that the GARCH model can be used in

derivative pricing topics with an appropriate estimation method.

To fill this potential gap in the literature on volatility derivatives pricing, we focus on the issue of

pricing VIX futures with discrete-time GARCH-type models. One appealing advantage of GARCH-type

models is the convenience of parameter estimation. Unlike stochastic volatility models with unobservable

shocks, the shocks in the GARCH model are observable, and the estimation is straightforward for

implementation with maximum likelihood estimation. For large futures samples with substantial cross-

sectional dimension over a long period, it is important to use a less computationally demanding model to

implement the estimation discussed above jointly using both the VIX and VIX futures prices. GARCH

models, in our opinion, provide a good foundation from this perspective.

In this paper, we discuss VIX futures pricing under the classical discrete-time Heston-Nandi GARCH

model. An explicit pricing formula is provided via an integration of a transformed moment-generation

function of conditional volatility. Several estimation methods, in terms of the data used, are provided,

and their performance is investigated with the use of market data. Among them, the estimation by

jointly using the VIX and VIX futures prices yields satisfying pricing performance and good fit for both

the implied VIX and VIX future prices.

The remainder of the paper is structured as follows. Section 2 discusses the model’s pricing formula

for implied VIX and VIX future prices. Section 3 provides a series of estimation methods. Section 4

summarizes the main empirical results, and Section 5 presents our conclusions.

2Christoffersen et al. (2012) provides an extensive review of equity option pricing with GARCH models.
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2 The Model

2.1 Heston-Nandi GARCH model and risk neutralization

We assume the return of the S&P 500 index follows the Heston-Nandi GARCH model under the physical

measure P:

rt+1 = r + λht+1 −
1

2
ht+1 +

√
ht+1εt+1

ht+1 = ω + βht + α(εt − δ
√
ht)

2 (2.1)

where εt follows a standard normal distribution, r is the risk-free interest rate, rt is the log-return of the

asset, and λ is the equity premium parameter associated with the conditional variance, which allows

the average spot return to depend on the level of risk. The variance equation nests the leverage effect

and volatility clustering effect, which are common in the financial market.

Under the LRNVR proposed by Duan (1995), we have the following risk-neutral (Q) dynamics:

rt+1 = r − 1

2
ht+1 +

√
ht+1ε

∗
t+1

ht+1 = ω + βht + α(ε∗t − δ∗
√
ht)

2 (2.2)

where ε∗t = ε+ λ
√
ht, δ

∗ = δ + λ. The unconditional expectation of ht under the Q measure is

σ2h = EQ[ht] =
ω̃

1− β̃
(2.3)

where ω̃ = ω + α and β̃ = β + α(δ + λ)2.

2.2 The model-implied VIX formula

According to the CBOE and related papers such as Hao and Zhang (2013), the VIX can be calculated

as the annualized arithmetic average of the expected daily variance over the following month, which is

(V IXt

100

)2
=

1

n

n∑
k=1

EQ
t [ht+k]×AF (2.4)

where ht is the instantaneous daily variance of the return of the S&P 500. AF is the annualizing factor

that converts daily variance into annualized variance by holding the daily variance constant over a year.

For simplicity, we define

Vt =
1

22

22∑
k=1

EQ
t [ht+k] (2.5)
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and thus, Vt = 1
252(V IXt100 )2 is a proxy for V IXt in terms of daily variances3.

The affine structure of the Heston-Nandi GARCH model provides the following linear relationship

between the model-implied VIX and conditional variance.

PROPOSITION 1. If the S&P 500 return follows the Heston-Nandi GARCH model presented in

(2.2), then the implied volatility at time t is a linear function of the conditional volatility of next period

Vt = Ψ + Γht+1 (2.6)

where Γ = 1−β̃n
n(1−β̃)

and Ψ = ω̃

1−β̃
(1− Γ).

Proof of this can be found in Hao and Zhang (2013). The model-implied V IXt is then given by

annualizing the conditional daily standard deviation:

V IXt = 100×
√

252Vt = 100×
√

252(Ψ + Γht+1) (2.7)

2.3 The explicit formula of VIX futures price

The advantage of using the Heston-Nandi GARCH model is that it ensures a closed-form solution to

the VIX futures price. This enables estimation methods that aim to minimize the VIX futures pricing

error. For the purpose of simplification, we rewrite (2.7) as:

V IXt = 100×
√

252Vt = 100×
√
a+ bht+1

where a and b are defined as a = 252×Ψ and b = 252× Γ.

The price of the VIX futures can be interpreted as its conditional expectation at maturity time T

evaluated at the current time t under risk-neutral measures, which allows the following expression given

by Zhu and Lian (2012):

F (t, T ) = EQ
t [V IXT ] = EQ

t [100
√
a+ bhT+1] =

100

2
√
π

∫ ∞
0

1− e−saEQ
t [e−sbhT+1 ]

s3/2
ds (2.8)

where t is the current date and T − t is the time to maturity.

The last term EQ
t [e−sbhT+1 ] can be expressed as the moment-generating function of the conditional

variance at time T + 1. Under the Heston-Nandi GARCH model, this allows a closed-form solution as

stated in the following proposition.

3This means that we assume 22 days a month and 252 days a year, which is quite common in terms of the numbers of
trading days.
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PROPOSITION 2. The moment-generating function of the conditional variance ht+m (m days from

now) at time t is exponentially affine in ht+1, and it allows the following expression

f(φ,m, ht+1) = EQ
t [eφht+m+1 ] = eC(φ,m)+H(φ,m)ht+1 (2.9)

where the functions C(φ,m) and H(φ,m) are given by an iterative relationship

C(φ, n+ 1) = C(φ, n)− 1

2
ln(1− 2αH(φ, n)) + ωH(φ, n) (2.10)

H(φ, n+ 1) =
αδ∗H(φ, n)

1− 2αH(φ, n)
+ βH(φ, n) (2.11)

with initial condition

C(φ, 0) = 0, H(φ, 0) = φ (2.12)

The parameters are defined in the Heston-Nandi GARCH model.

Proof: See the Appendix.

Hence, the VIX futures price under the Heston-Nandi GARCH model can be calculated by:

F (t, T ) =
100

2
√
π

∫ ∞
0

1− e−saf(−sb, T − t, (V IXt/100)
2−a

b )

s3/2
ds (2.13)

The function f(·) is defined in proposition 2.

3 Data and Estimation

Basically, we have three different time series: the log-return series of the S&P 500, the quote series of

the CBOE VIX, and the series of VIX futures prices for different maturities across time. The first two

series are collected from Yahoo Finance, and the last series is collected from the CBOE’s website. All

series range from 2004.3.26 to 2013.12.18 and contain 2451 returns/VIX and 14501 VIX futures prices.

A summary of the dataset is shown in Table I and II.

[Insert Table I here]

[Insert Table II here]

These three series form an information cascade with the log-returns at the bottom level and the

VIX futures at the top level. Following this cascade, three “single series” estimation methods can be

applied.

The first approach, which is the most straightforward, is to run a maximum likelihood estimation
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with the bottom-level data (S&P 500 returns) only. The likelihood function is:

lnLR = −T
2

ln(2π)− 1

2

T∑
t=1

(
ln(ht) + [Rt − r − λht +

1

2
ht]

2/ht

)
(3.1)

where ht is updated by the conditional variance process. Such estimation provides us with parameters

under physical dynamics. Due to the simplicity of both the Heston-Nandi GARCH model and the

LRNVR, this estimation can obtain all parameters needed to recover its risk-neutral dynamics and,

therefore, is sufficient to calculate the model-implied VIX and VIX futures prices.

The second approach is to calibrate4 with the mezzanine level data (VIX) only. Assume the following

distribution

V IXMkt = V IXImp + u, u ∼ i.i.d.N(0, s2V )

The s2V is estimated using the sample variance of pricing errors. Then we have the log-likelihood

function:

lnLV = −T
2

ln(2πŝV
2)− 1

2ŝV
2

T∑
t=1

(V IXMkt − V IXImp)2 (3.2)

This method focuses on the fitness of the VIX only instead of the S&P return. Because the VIX is the

most direct underlying asset of the VIX futures, we suppose that it contains more information than the

S&P 500 returns. For example, as shown in a previous study (Hao and Zhang (2013), etc.), the variance

risk premium contained in the VIX cannot be obtained by fitting the model using the return data of

the S&P 500 only. Frijns et al. (2015) documented a strong Granger causality from VIX futures to VIX

than the other way around. Therfore, it might be insufficient to consider VIX data only.

The third approach is to calibrate with the top-level data (VIX futures prices) only. This approach

is direct and common in practice regardless of rationality: in terms of pricing error, this approach is

supposed to have the best pricing performance because its objective function only concerns the prices of

VIX futures. However, this approach may lead to great distortion when we use the calibrated parameters

for implied VIX calculation. The corresponding likelihood function is:

lnLF = −T
2

ln(2πŝF
2)− 1

2ŝF
2

T∑
t=1

(FutMkt − FutMod)2 (3.3)

Besides the above three straightforward estimation approaches, we also apply additional methods

with mixed information. The fourth approach is to run a joint estimation with the lower two levels

of data (S&P 500 returns and the VIX). This kind of joint method is popular in the current pricing

4Although we are using a maximum likelihood estimation notation, this method is essentially a calibration method.
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literature that aims to better reconcile P and Q measure information5. The parameters can be obtained

by maximizing the joint log-likelihood function:

lnLV R = lnLV + lnLR (3.4)

The last estimation approach is to run a joint estimation with the upper two levels of data (the

VIX and VIX futures prices). That is, we estimate parameters by maximizing the joint log-likelihood

function as:

lnLV F = lnLV + lnLF (3.5)

Compared with the estimation methods provided above, this method, by taking into account the fitting

errors of both the VIX and VIX futures prices together, seeks a good balance between the underling

asset (VIX) and the derivatives (VIX futures).

To insure the stationarity of the volatility process, the following constraint on parameters is imposed

in addition to the positivity constraint of all parameters.

β + αδ∗2 < 1

Note that δ∗ = δ + λ. The positivity of λ and δ implies that this Q measure stationary condition also

means P measure stationarity.

4 Empirical Results

4.1 Parameters

In Table III, we present our parameter estimation results for the Heston-Nandi GARCH model using the

different estimation approaches. The first row denotes the estimation approach we use. For example,

the “Return” column denotes the estimation by S&P 500 returns data only. The parameter π here is

defined as β + αδ∗, which measures the persistence of the filtered conditional volatility. The last five

rows present the values of the log-likelihood functions by each estimation approach in which the bolded

value is the conventional reported likelihood value6. Robust standard errors are provided in parentheses.

[Insert Table III here]

5See Kanniainen et al. (2014) etc.
6The bolded diagonal elements denote the ones to be maximized, whereas the off-diagonal elements denote the likelihood

value of corresponding parameters in the column evaluated with the likelihood function in the row. For example, the LR
value for VIX is the value of LR evaluated by parameters calibrated by VIX. It is clear that each set of parameters
maximizes the corresponding likelihood function.
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The most notable finding in Table 3 is the obvious parameter distortion in the estimation by VIX

futures prices. The β increases significantly and becomes very close to 1, which is its upper limit.

Contrastingly, the δ∗ drops largely from around 300 to 5.65. These parameters are relatively robust to

initial values because the parameters from the last column (which also involves fitting VIX futures) do

provide a significantly larger LF . Such parameter distortion indicates a great smoothness in the model-

implied VIX. With such large β values, the conditional volatility at time t nearly totally determines the

conditional volatility at time t+1, whereas the “shock” at time t has little effect (much weaker leverage

effect δ∗). Other notable findings among “single series” estimations are: 1) a significant rise of δ∗ from

the return-based estimate to the VIX-based estimate; 2) a significant rise of persistent parameter π

from P information-based parameters (return only) to Q information-based parameters (VIX index and

VIX futures). These two findings are consistent with the existing literature (e.g. Christoffersen et al.

(2014), Kanniainen et al. (2014) etc.).

For mixed information estimations, parameters by joint estimation using S&P 500 returns and VIX

are very close to those estimated by VIX only. Thus, incorporating the return data with VIX data does

not provide much additional information for parameter estimation. However, this is not the case for

joint estimation using the VIX index and VIX futures whereby joint estimates significantly differ from

those calibrated only from VIX futures or the VIX index itself. The following subsections are provided

to investigate the model’s ability to replicate the VIX index and price VIX futures in which a desirable

parameter set should perform well in both aspects7.

4.2 Model-implied VIX

Table IV summarizes the performance of different estimation methods for the model-implied VIX. The

first four columns are related to errors, which are defined as the market VIX minus the corresponding

model-implied VIX. Conventional measures are provided, namely, the mean error (ME), the root mean

square error (RMSE), the mean absolute error (MAE) and the standard deviation of error (StdErr).

The last column is the correlation coefficient (Corr) between the model-implied VIX and the market

VIX. Plots on both series are also provided8 in Figure 1.

[Insert Table IV here]

[Insert Figure 1 here]

Not surprisingly, the model-implied VIX generated by parameters based on S&P 500 returns only

significantly underestimates the VIX index. This reflects the fact that the single-shock GARCH-type

7A more desirable case is that a model, with one set of parameters, can replicate all three levels of data: S&P 500
returns, VIX and VIX futures. Unfortunately, the existing literature indicates that it is hard for GARCH-type models to
replicate both P and Q dynamics. Therefore, this paper only focuses on the VIX and VIX futures and leaves the additional
fit of returns for further research.

8The graph for VIX and return joint estimation is almost identical to that for VIX only and is available upon request.
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model under LRNVR can only capture equity risk premium and leaves the volatility risk premium

unattended. When parameters are calibrated by the VIX index or another information source un-

der risk-neutral dynamics (where both premiums are already taken into account in the dataset), the

underestimation is no longer profound.

The model-implied VIX based only on the estimation by VIX futures prices has an even higher error

than that based only on returns. This fact is more obvious in Figure 1(c) in which the model-implied

VIX is just a long run smoothed of the actual data. This confirms the results that we have discussed

in model estimation: parameters lead to great distortion of underlying dynamics.

For joint estimation using VIX and VIX futures, although the parameters here are obviously different

from those estimated by VIX only, the fitting performance for the implied VIX is similar, with a RMSE

of 4.94 (combination of VIX and VIX futures) compared with 4.60 (VIX only). Moreover, compared

with the parameters using VIX futures data only, the joint parameters show a significant improvement

regarding implied VIX fitting, with the RMSE increasing from 6.9 to 4.9. This indicates that the

parameters by joint estimation of VIX and VIX futures are more desirable.

4.3 VIX Futures Prices

Table V summarizes the performance of the different methods for VIX futures pricing. The meanings of

each column are as defined in the previous subsection. Not surprisingly, the parameters based on VIX

futures only provide the best pricing performance. Among the other approaches, parameters estimated

by return only show the worst RMSE performance. The table also shows a severe underestimation for

VIX futures prices. Parameters by VIX only and the combination of return/VIX demonstrate better

pricing performance for VIX futures compared with that by return only. Again, joint estimation of VIX

and VIX futures shows a significant improvement over that of VIX-only estimation, and the results are

very close to the prices estimated by the VIX futures-only approach.

[Insert Table V here]

For more detailed information on RMSE, we present Table VI in which the RMSE of pricing errors

is summarized by different VIX levels, basis9 levels and time to maturity.

[Insert Table VI here]

In addition to the above findings, the model performs better when the maturity is shorter and

the basis is smaller. The RMSE increases when the VIX level is greater than 15. These findings are

intuitive because these cases include either futures, which are similar to the underlings, or the underlings

themselves, which are less volatile. However, the RMSE is also significantly higher when the VIX is low.

The reason for this lies in the fact that the parameters are trained to fit VIX series for full samples,

9Basis = VIX index - VIX futures price.
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whereas peaks of the VIX around a subprime crisis tend to be overlooked under the square root loss

function.

Following Zhu and Lian (2012), we also provide the term structure10 of the model-implied VIX

futures along with its market counterpart in Figure 2. The blue lines indicate the market’s term

structure, the red lines indicate the term structure estimated jointly by VIX/VIX futures, and the

green lines correspond to the estimation by VIX only. Instead of evaluating the term structure on the

mean of VIX in the full sample, we evaluate the structure with a partition of futures data with respect

to their underlying VIX levels. The main concern of this modification is to reconcile the fact that our

sample spans a period during which the VIX changed violently. In particular, we divided the futures

into two groups: the first group contains those with an underlying VIX level of less than 25, which is

denoted as the “Normal VIX level” group. The second group contains the futures with an underlying

VIX level greater than 25, denoted as the “High VIX level” group11.

[Insert Figure 2 here]

Before focusing on the comparison, it is important to notice that the structure is totally different

when the underlying VIX is high as it shows a downward slope instead of the commonly reported full

sample upward-sloped curve. This is a natural result when volatility follows a mean reversion process:

the high VIX level is much higher than the mean VIX level; therefore, we expect the future VIX level

to fall instead of rise. The term structure implied by the VIX-only parameters has a significant larger

error of overestimation when volatility is normal and underestimation when volatility is high. A possible

explanation for this lies in the fact that the VIX dynamics implied by futures prices are much more

persistent than the VIX dynamics themselves12. The higher persistence of volatility means that we

expect a lower reversion speed for volatility and a flatter term structure for VIX futures.

These findings shed light on the role of the parameters and the reason why joint estimates work

better. First, persistence parameter π is important for VIX futures pricing. A better pricing result

requires that π be very close to one. However, the leverage parameter δ and the parameter of lagged

volatility β are important for fitting VIX dynamics. A better fit for implied VIX usually requires a

lower β and a higher δ to apply more weight to current shocks rather than historical volatility. When

joint estimation was applied, the VIX futures data trained the model to have a high level of π, whereas

the VIX data guided the model to achieve this goal by increasing β while maintaining a high level of δ.

Without the help of the VIX data, as with the VIX futures-only case, the model will easily get trapped

with an extremely high β and low δ.

10We divide the future data into groups according to their maturities. Each group is 10 days long. The term structure
is defined as the average of market/model prices within each group and those plotted against maturities. The graph for
the joint estimation of VIX and return is almost identical to that for VIX only and is available upon request.

11The first group contains some 77% of all constructs. VIX = 25 is also a cut-off point when we discuss RMSE for
pricing errors.

12Recall the results from parameter estimation when the futures-only method yields a high β and low δ.
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5 Conclusion

In this paper, we discuss VIX futures pricing under the classical discrete-time Heston-Nandi GARCH

model. Under the LRNVR, an explicit pricing formula can be found via an integration of the transformed

moment generation function of conditional volatility. In terms of the information cascade of data, several

estimation approaches are provided, and their performance is investigated with the use of market data.

In line with the existing literature, the bottom-level return data provide little information on VIX

futures, whereas the mezzanine-level VIX index data provide much more. Although the calibration with

respect to the top-level VIX futures data provides minimum pricing errors, it leads to great distortion

in the model-implied VIX. However, the joint information from the VIX index and VIX futures can

provide similar pricing performance on VIX futures without distortion on the dynamic of the model-

implied VIX. A brief discussion on model parameters is provided to address the importance of the

balance of β and δ in achieving a π with higher persistence. The results confirm that the Heston-Nandi

GARCH model with appropriate information sources under the Q measure can fit both VIX future

prices and VIX index dynamics. However, simply adding returns information cannot lead to a good fit

of all three levels. Such finding indicates the importance of searching for a new model with the ability

to fit both P and Q dynamics.
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Appendix

Proof of Proposition 2

Proof. Suppose the moment-generating function has the following form:

EQ
t [eφht+m+1 ] = eC(φ,m)+H(φ,m)ht+1

Then by the initial condition, we have

C(φ, 0) = 0, H(φ, 0) = φ

We also suppose the following recursion relationship:

C(φ,m+ 1) = C(φ,m) + CJ(H(φ,m))

H(φ,m+ 1) = HJ(H(φ,m))

We will see under the Heston-Nandi GARCH model that we can have a closed-form solution for CJ(·)
and HJ(·).

We have

EQ
t [eφht+m+2 ] = eC(φ,m+1)+H(φ,m+1)ht+1

We also have

EQ
t [eφht+m+2 ] = EQ

t [EQ
t+1[e

φht+m+2 ]]

= EQ
t [eC(φ,m)+H(φ,m)ht+2 ]

Let

s = H(φ,m)
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Then we solve

EQ
t [esht+2 ] = esω+sβht+1+sδ∗2αht+1EQ

t [esαε
∗2
t+1−2sαδ∗

√
ht+1ε∗t+1 ]

= esω+sβht+1+sδ∗2αht+1

∫ ∞
−∞

1√
2π
e−

x2

2 esαx
2−2sαδ∗

√
ht+1xdx

= esω+sβht+1+sδ∗2αht+1

(∫ ∞
−∞

1√
2π 1√

1−2sα
e
−

(x+
2sαδ∗

√
ht+1

1−2sα )2

2( 1
1−2sα ) dx

) 1√
1− 2sα

e
2s2α2δ∗2ht+1

1−2sα

The integral part is 1, so we have

EQ
t [esht+2 ] = esω−

1
2
ln(1−2sα)e

(
sβ+ sαδ∗2

1−2sα

)
ht+1

By comparison, we have

CJ(s) = sω − 1

2
ln(1− 2sα)

HJ(s) = sβ +
sαδ∗2

1− 2sα

Thus, we have obtained the closed-form recursion relationship for the moment-generating function.
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TABLE I

Summary statistics for S&P 500 returns and VIX

Number Mean Std Max Min Skew Kurt

Return 2451 0.0002 0.01 0.11 -0.09 -0.33 13.90
VIX 2451 20.27 10.00 80.86 9.89 2.29 9.72

TABLE II

Summary statistics for VIX futures

Number Mean Std Max Min Skew Kurt

VIX
< 15 3809 15.54 2.51 27.60 10.37 1.44 6.42

15 ∼ 20 4496 21.46 3.37 31.00 13.50 0.05 2.46
20 ∼ 25 2848 25.52 2.98 33.35 17.38 0.30 2.42
25 ∼ 30 1339 27.96 2.92 34.55 21.10 -0.13 2.17
> 30 2009 36.02 6.98 66.23 22.15 0.92 4.13

Basis
< −6 692 36.09 8.40 66.23 22.15 0.59 3.10
−6 ∼ −3 520 31.29 9.23 63.88 14.42 0.53 3.33
−3 ∼ +3 7311 21.43 7.56 63.71 10.37 1.16 4.49

3 ∼ 6 3899 21.99 4.89 51.13 13.08 0.46 3.44
> 6 2079 26.20 3.26 34.20 17.35 0.13 2.62

Maturity
< 50 3641 21.42 8.87 66.23 10.37 1.70 6.53

50 ∼ 100 3365 23.21 7.77 59.77 12.21 1.15 4.74
100 ∼ 150 3082 24.06 6.97 50.58 13.16 0.70 3.40
150 ∼ 200 2785 24.77 6.36 45.26 13.52 0.41 3.03
> 200 1628 23.90 5.50 38.80 14.32 0.17 2.44
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TABLE III

Parameters of the Heston-Nandi GARCH model under different methods

Return VIX Return + VIX VIX future VIX + VIX future

β 0.7638 0.7064 0.6963 0.9954 0.7939
(0.026) (0.001) (0.002) (0.000) (0.003)

α 3.4108E-6 2.3415E-6 2.4053E-6 1.2139E-6 1.4124E-6
(9.933E-8) (3.527E-9) (1.238E-8) (1.100E-9) (2.136E-8)

δ? 249.3500 349.0718 350.1333 5.6549 377.5120
(17.094) (0.987) (1.957) (0.007) (5.838)

h0 1.2006E-4 2.8403E-4 2.7323E-4 2.6789E-4 2.9545E-4
(1.114E-4) (8.634E-6) (3.994E-6) (2.785E-6) (3.301E-6)

π 0.9759 0.9918 0.9912 0.9955 0.9952
Log-likelihood

LR 7895 7810 7820 7480 7740
LV -8152 -7218 -7222 -8227 -7394
LV R -258 593 598 -747 346
LF -51214 -40656 -40932 -38977 -39151
LV F -59366 -47874 -48154 -47204 -46545

Robust standard errors are in parentheses.

TABLE IV

Summary of model-implied VIX

ME RMSE MAE StdErr Corr

Return 3.7506 6.7337 4.4262 5.5936 0.8929
VIX -0.1270 4.5990 3.3600 4.5982 0.8965

VIX futures -1.6971 6.9423 5.2076 6.7331 0.8179
Return + VIX 0.0524 4.6076 3.3671 4.6082 0.8967

VIX + VIX futures -0.2551 4.9424 3.3236 4.9368 0.8818
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TABLE V

Summary of VIX futures pricing

ME RMSE MAE StdErr Corr

Return 5.8400 8.2716 6.3069 5.8579 0.6448
VIX -0.0471 3.9938 3.1188 3.9937 0.8540

VIX futures 0.0760 3.5571 2.6242 3.5564 0.8832
Return + VIX 0.1843 4.0705 3.1860 4.0664 0.8500

VIX + VIX futures 0.1446 3.5999 2.6925 3.5971 0.8793

TABLE VI

RMSE for VIX futures pricing by VIX, basis and maturity

VIX < 15 15 ∼ 20 20 ∼ 25 25 ∼ 30 > 30

Return 2.0858 5.9416 8.7581 10.1878 15.1221
VIX 4.6975 2.5812 3.3476 3.8200 5.7246

VIX futures 3.2469 2.6568 3.2959 3.2811 5.7421
Return + VIX 4.5915 2.5911 3.5111 4.0465 6.0174

VIX + VIX futures 3.4027 2.6586 3.3805 3.4116 5.6404

Basis < −6 −6 ∼ −3 −3 ∼ +3 3 ∼ 6 > 6

Return 15.8516 13.0987 6.7470 6.8557 10.1222
VIX 6.4425 4.5313 3.6728 3.9013 4.0442

VIX futures 8.8647 3.0011 2.5538 3.0840 4.3779
Return + VIX 6.4705 4.8595 3.7282 3.9160 4.2557

VIX + VIX futures 8.4467 3.0431 2.6817 3.2424 4.4045

Maturity < 50 50 ∼ 100 100 ∼ 150 150 ∼ 200 > 200

Return 4.2043 7.9802 9.5198 10.2119 9.1597
VIX 2.4064 3.8507 4.4172 4.7273 4.7412

VIX futures 2.3049 3.5500 3.9429 3.9968 4.1703
Return + VIX 2.4254 3.9127 4.5099 4.8644 4.7880

VIX + VIX futures 2.3157 3.5798 3.9804 4.0704 4.2400
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FIGURE 1
Model-implied VIX for different methods
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FIGURE 2
Model-implied VIX futures term structures for different VIX levels
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